Complex.ID Complex BIOgrid Subunit.number species MCS Source.number PMID-1 Description-1 PMID-2 Description-2 PMID-3 Description-3 PMID-4 Description-4 Name-1 Pubchme.CID-1 Molecular Formula-1 SMILES-1 Name-2 Pubchme.CID-2 Molecular Formula-2 SMILES-2 Entry.ID_subunit-1 Symbol_subunit-1 Uniprot_subunit-1 Organelle.location_subunit-1 Entry.ID_subunit-2 Symbol_subunit-2 Uniprot_subunit-2 Organelle.location_subunit-2 Entry.ID_subunit-3 Symbol_subunit-3 Uniprot_subunit-3 Organelle.location_subunit-3 Entry.ID_subunit-4 Symbol_subunit-4 Uniprot_subunit-4 Organelle.location_subunit-4 Entry.ID_subunit-5 Symbol_subunit-5 Uniprot_subunit-5 Organelle.location_subunit-5 Entry.ID_subunit-6 Symbol_subunit-6 Uniprot_subunit-6 Organelle.location_subunit-6 Entry.ID_subunit-7 Symbol_subunit-7 Uniprot_subunit-7 Organelle.location_subunit-7 Entry.ID_subunit-8 Symbol_subunit-8 Uniprot_subunit-8 Organelle.location_subunit-8 CMCS00001 VAPA_OSBPL1A OSBPL1A_VAPA(LTP) 2 Human ER-Autophagosome; Autophagosome-ER 1 27283760 ORP1L localizes to late autophagosomes and—under low-cholesterol conditions—contacts the ER protein VAP-A, forming ER-autophagosome contact sites, which prevent minus-end transport by the Rab7–RILP–dynein complex. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00001 OSBPL1A Q9BXW6 Autophagosome LMCS00002 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00002 STARD11_MOSPD2 NA 2 Human ER-GA; GA-ER 1 29858488 Consequently, MOSPD2 and these organelle‐bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi.; ll these proteins, by binding VAP proteins, are known to build contact sites between the ER and endosomes (STARD3, STARD3NL, ORP1L), mitochondria (PTPIP51), and Golgi (STARD11). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00054 CERT1 Q9Y5P4 GA LMCS00355 MOSPD2 Q8NHP6 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00003 OSBPL5_NPC1 OSBPL5_NPC1(LTP) 2 Human ER-Endosome; Endosome-ER 1 21220512 Our results suggest that ORP5 may cooperate with NPC1 to deliver cholesterol from LE/LY to the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00005 OSBPL5 Q9H0X9 ER LMCS00004 NPC1 O15118 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00004 VAPA_OSBPL1A_sterol_PI(4)P_NPC1 VAPA_OSBPL1A(LTP) 5 Human ER-Endosome; Endosome-ER 1 28564600 Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP)-binding activities of ORP1L, as well as NPC1 expression. NA NA NA NA NA NA sterol 1107 C17H28O C1CC2CCC3C4CCC(CC4CCC3C2C1)O PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC LMCS00029 VAPA Q9P0L0 ER LMCS00026 OSBPL1A Q9BXW6 Endosome LMCS00004 NPC1 O15118 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00005 PTP1B_Prdx4_G-Csf3r NA 3 Mouse ER-Endosome; Endosome-ER 1 22045733 Using this technique, we could confirm the results obtained by confocal laser scanning microscopy (CLSM) showing colocalization of G-CSFR, Ptp1b and Prdx4.; Here, we show that the ER-resident antioxidant peroxiredoxin 4 (Prdx4) interacts with the cytoplasmic domain of the granulocyte colony-stimulating factor receptor (G-CSFR). This interaction occurs when the activated G-CSFR resides in early endosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00006 Prdx4 O08807 ER LMCS00007 Csf3r P40223 Endosome LMCS00274 Ptpn1 P35821 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00006 ZFYVE27_FYCO1_KIF5B_RAB7A_PI(3)P ZFYVE27_RAB7A(HTP: 0.02); FYCO1_KIF5B(HTP: -); FYCO1_RAB7A(HTP: 0.00) 5 Human ER-Endosome; Endosome-ER 1 25855459 Such fusion induces outgrowth of protrusions and neurites, which requires the abilities of protrudin and FYCO1 to interact with LEs and kinesin 1.Thus, protrudin-containing ER-LE contact sites are platforms for kinesin-1 loading onto LEs, and kinesin-1-mediated translocation of LEs to the plasma membrane, fuelled by repeated ER contacts, promotes protrusion and neurite outgrowth. NA NA NA NA NA NA PI(3)P 643964 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00032 ZFYVE27 Q5T4F4 ER LMCS00009 FYCO1 Q9BQS8 Endosome LMCS00065 KIF5B P33176 Endosome LMCS00039 RAB7A P51149 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00007 S100A11_ANXA1 S100A11_ANXA1(LTP) 2 Human ER-Endosome; Endosome-ER 1 27270042 Here we show that these contacts are tethered by annexin A1 and its Ca2+-dependent ligand, S100A11, and form a subpopulation of differentially regulated contact sites between the ER and endocytic organelles. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00010 S100A11 P31949 ER LMCS00034 ANXA1 P04083 ER; Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00008 VAPA_VAPB_SNX2 VAPA_VAPB(LTP); VAPB_SNX2(HTP: 1.00) 3 Human ER-Endosome; Endosome-ER 1 27419871 An interaction between VAP and the retromer subunit SNX2 tethers the ER to endosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00011 SNX2 O60749 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00009 VAPA_VAPB_OSBP_PI(4)P OSBP_VAPB(HTP: 1.00); VAPA_VAPB(LTP); OSBP_VAPA(LTP) 4 Human ER-Endosome; Endosome-ER 1 27419871 Defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00012 OSBP P22059 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00010 ZFYVE27_Fyco1_Kif5b_Rab7a_PI(3)P NA 5 Rat ER-Endosome; Endosome-ER 1 25855459 Here we show in human and rat cell lines that protrudin, an ER protein that promotes protrusion and neurite outgrowth, forms contact sites with late endosomes (LEs) via coincident detection of the small GTPase RAB7 and phosphatidylinositol 3-phosphate (PtdIns(3)P). These contact sites mediate transfer of the microtubule motor kinesin 1 from protrudin to the motor adaptor FYCO1 on LEs. NA NA NA NA NA NA PI(3)P 643964 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00211 Zfyve27 Q6P7B7 ER LMCS00632 Fyco1 D3Z9D2 Endosome LMCS00417 Kif5b Q2PQA9 Endosome LMCS00210 Rab7a P09527 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00011 VAPA_VAPB_OSBPL1A VAPA_VAPB(LTP); VAPB_OSBPL1A(LTP) 3 Human ER-Endosome; Endosome-ER 1 27270042 This sterol traffic depends on interaction between ER-localized VAP and endosomal oxysterol-binding protein ORP1L, and is required for the formation of ILVs within the MVB and thus for the spatial regulation of EGFR signaling. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00026 OSBPL1A Q9BXW6 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00012 Spast_Ist1 Ist1_Spast(HTP: 0.83) 2 Mouse ER-Endosome; Endosome-ER 1 28389476 We found that interaction between the microtubule-severing enzyme spastin and the ESCRT protein IST1 at ER-endosome contacts drives endosomal tubule fission. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00018 Spast Q9QYY8 ER LMCS00017 Ist1 Q9CX00 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00013 MOSPD2_STARD3NL STARD3NL_MOSPD2(HTP: 0.89) 2 Human ER-Endosome; Endosome-ER 1 29858488 Consequently, MOSPD2 and these organelle‐bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi.; ll these proteins, by binding VAP proteins, are known to build contact sites between the ER and endosomes (STARD3, STARD3NL, ORP1L), mitochondria (PTPIP51), and Golgi (STARD11). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00019 MOSPD2 Q8NHP6 ER LMCS00031 STARD3NL O95772 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00014 MOSPD2_STARD3 MOSPD2_STARD3(LTP) 2 Human ER-Endosome; Endosome-ER 1 29858488 Consequently, MOSPD2 and these organelle‐bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi.; ll these proteins, by binding VAP proteins, are known to build contact sites between the ER and endosomes (STARD3, STARD3NL, ORP1L), mitochondria (PTPIP51), and Golgi (STARD11). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00019 MOSPD2 Q8NHP6 ER LMCS00030 STARD3 Q14849 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00015 MOSPD2_OSBPL1A MOSPD2_OSBPL1A(LTP) 2 Human ER-Endosome; Endosome-ER 1 29858488 Consequently, MOSPD2 and these organelle‐bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi.; ll these proteins, by binding VAP proteins, are known to build contact sites between the ER and endosomes (STARD3, STARD3NL, ORP1L), mitochondria (PTPIP51), and Golgi (STARD11). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00019 MOSPD2 Q8NHP6 ER LMCS00026 OSBPL1A Q9BXW6 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00016 VPS13_SPO71 VPS13_SPO71(LTP) 2 Yeast ER-Prospore membrane; Prospore membrane-ER 1 30018089 Our results suggest Spo71, an established Vps13 prospore membrane adaptor, contains a PxP motif that is necessary and sufficient for Vps13 binding, indicating that the mechanism for Vps13 binding is conserved between proteins. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00020 VPS13 Q07878 ER LMCS00021 SPO71 Q03868 Prospore membrane NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00017 Pdzd8_Rab7a NA 2 Mouse ER-Endosome; Endosome-ER 1 31636202 PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00022 Pdzd8 B9EJ80 ER LMCS00040 Rab7a P51150 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00018 PDZD8_RAB7A RAB7A_PDZD8(LTP) 2 Human ER-Endosome; Endosome-ER 1 31636202 PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00023 PDZD8 Q8NEN9 ER LMCS00039 RAB7A P51149 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00019 Ano10_Rab7a NA 2 Mouse ER-Endosome; Endosome-ER 1 32620747 We find endoplasmic reticulum-localized TMEM16K acts at ER-endosome contact sites where it interacts with the endosomal protein Rab7. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00024 Ano10 Q8BH79 ER LMCS00040 Rab7a P51150 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00020 ANO10_RAB7A NA 2 Human ER-Endosome; Endosome-ER 1 32620747 We find endoplasmic reticulum-localized TMEM16K acts at ER-endosome contact sites where it interacts with the endosomal protein Rab7. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00025 ANO10 Q9NW15 ER LMCS00039 RAB7A P51149 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00021 PTPN1_Prdx4_CSF3R NA 3 Human ER-Endosome; Endosome-ER 1 22045733 Using this technique, we could confirm the results obtained by confocal laser scanning microscopy (CLSM) showing colocalization of G-CSFR, Ptp1b and Prdx4.; Here, we show that the ER-resident antioxidant peroxiredoxin 4 (Prdx4) interacts with the cytoplasmic domain of the granulocyte colony-stimulating factor receptor (G-CSFR). This interaction occurs when the activated G-CSFR resides in early endosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00027 PTPN1 P18031 ER LMCS00008 CSF3R Q99062 Endosome LMCS00272 PRDX4 Q13162 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00022 PTPN1_EGFR PTPN1_EGFR(LTP) 2 Human ER-Endosome; Endosome-ER 4 20118922 Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor(EGFR) interaction. 11872838 We investigated the in- teraction between PTP1B and two RTKs, the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor-b(PDGFR). 27270042 ER-MVB contacts additionally function in epidermal growth factor receptor (EGFR) tyrosine kinase downregulation by providing sites where the ER-localized phosphatase, PTP1B, interacts with endocytosed EGFR before the receptor is sorted onto intraluminal vesicles (ILVs). 36744428 In this study, we demonstrate that LRRK1 facilitates EGFR dephosphorylation by PTP1B (also known as PTPN1), an endoplasmic reticulum (ER)-localized protein tyrosine phosphatase, at the ER–endosome contact site, after which EGFR is sorted into the ILVs of endosomes. NA NA NA NA NA NA NA NA LMCS00027 PTPN1 P18031 ER LMCS00033 EGFR P00533 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00023 VAPA_VAPB_STARD3 VAPA_VAPB(LTP); VAPB_STARD3(LTP); VAPA_STARD3(LTP) 3 Human ER-Endosome; Endosome-ER 2 24105263 STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. 28377464 Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00030 STARD3 Q14849 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00024 VAPA_VAPB_STARD3NL VAPA_VAPB(LTP) 3 Human ER-Endosome; Endosome-ER 1 24105263 STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00031 STARD3NL O95772 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00025 SPAST_IST1 SPAST_IST1(LTP) 2 Human ER-Endosome; Endosome-ER 2 28389476 We found that interaction between the microtubule-severing enzyme spastin and the ESCRT protein IST1 at ER-endosome contacts drives endosomal tubule fission. 23897888 An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome, Our results suggest that inclusion of IST1 into the ESCRT complex allows recruitment of spastin to promote fission of recycling tubules from the endosome. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00037 SPAST Q9UBP0 ER LMCS00036 IST1 P53990 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00026 VAPB_VAPA_VPS13C VAPB_VPS13C(HTP: 0.90); VAPA_VPS13C(HTP: 1.00); VAPA_VAPB(LTP) 3 Human ER-Endosome; Endosome-ER 1 30093493 An FFAT motif, a short amino acid sequence known to interact with the ER VAMP-associated protein (VAP), is present in the Vps13α region of both proteins as previously noted.; These findings not only confirm the role of the FFAT motif in anchoring these proteins to the ER but also indicate that binding sites for mitochondria (in VPS13A), late endosomes/lysosomes (in VPS13C), and lipid droplets (both proteins) are localized in the C-terminal regions of the two proteins. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00035 VAPB O95292 ER LMCS00029 VAPA Q9P0L0 ER LMCS00038 VPS13C Q709C8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00027 VAPB_VAPA_OSBPL1A_RAB7A_RILP VAPA_VAPB(LTP); VAPB_OSBPL1A(LTP); VAPA_OSBPL1A(LTP) 5 Human ER-Endosome; Endosome-ER 1 19564404 We show that cholesterol in LEs is sensed by ORP1L, which transmits this information to the Rab7–RILP–p150Glued complex through the formation of ER–LE membrane contact sites (MCSs). At these sites, the ER protein VAP enters the Rab7–RILP complex to control p150Glued binding and positioning of LEs. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00026 OSBPL1A Q9BXW6 Endosome LMCS00039 RAB7A P51149 Endosome LMCS00013 RILP Q96NA2 Endosome NA NA NA NA NA NA NA NA NA NA NA NA CMCS00028 VAPB_CERT1_VAPA VAPA_VAPB(LTP) 3 Human ER-GA; GA-ER 1 16895911 CERT has a pleck-strin homology (PH) domain for Golgi targeting and a START domain catalyzing the intermembrane transfer of ceramide. The region between the two domains contains a short peptide motif designated FFAT, which is supposed to interact with the ER-resident proteins VAP-A and VAP-B. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00054 CERT1 Q9Y5P4 GA LMCS00057 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00029 PI(4)P_ PLEKHA3_SACM1L_VAPA_VAPB VAPA_PLEKHA3(HTP: -); VAPB_SACM1L(LTP); VAPA_VAPB(LTP); VAPA_SACM1L(LTP) 5 Human ER-GA; GA-ER 1 30659099 The interaction of FAPP1, a TGN-associated protein, with two ER proteins (VAP and Sac1) prompted us to investigate whether FAPP1 localizes at ERTGoCS and whether the interaction of FAPP1 with Sac1 had any impact on the phosphatase activity of Sac1.; The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00057 VAPA Q9P0L0 ER LMCS00049 PLEKHA3 Q9HB20 GA LMCS00050 SACM1L Q9NTJ5 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00030 PI(4)P_VAPB_VAPA_OSBPL9_OSBP OSBP_VAPB(HTP: 1.00); OSBP_VAPA(LTP); VAPA_VAPB(LTP); OSBPL9_VAPB(HTP: 6.69); OSBPL9_VAPA(HTP: 11.72) 5 Human ER-GA; GA-ER 1 30659100 We have shown that OSBP1 and ORP9, while using the ERTGoCS for lipid exchange, can also act as tethers.The higher cellular levels of both OSBP1 and ORP9 and their higher affinity for VAPs and PI4P relative to other members of the family may explain why they can play a tethering role. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00057 VAPA Q9P0L0 ER LMCS00059 OSBPL9 Q96SU4 GA LMCS00056 OSBP P22059 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00031 VAPA_VAPB_PI(4)P_OSBP OSBP_VAPB(HTP: 1.00); VAPA_VAPB(LTP); OSBP_VAPA(LTP) 4 Human ER-GA; GA-ER 2 30905771 OSBP contains an N-terminal pleckstrin homology (PH) domain, which interacts with the TGN or endosomal PI(4)P and a central FFAT (two phenylalanines in an acidic tract) motif, which interacts with the general ER receptor VAP-A or VAP-B. 25420878 This was observed in the absence of oxysterol treatment, suggesting that the endogenous sterol ligands of OSBP together with PI4P are sufficient to maintain part of the OSBP–VAP complexes at a Golgi (or ER–Golgi MCS) location. NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00057 VAPA Q9P0L0 ER LMCS00056 OSBP P22059 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00032 VAPA_VAPB_PI(4)P_OSBP2 VAPA_OSBP2(HTP: 1.00); VAPA_VAPB(LTP); VAPB_OSBP2(HTP: 1.00) 4 Human ER-GA; GA-ER 1 30905771 Although quite distant in sequence, the N terminus of OSBP-related protein-4 (ORP4) has similar effects. ; Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00057 VAPA Q9P0L0 ER LMCS00053 OSBP2 Q969R2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00033 PI(4)P_ Plekha3_Sacm1l_Vapa_Vapb NA 5 Mouse ER-GA; GA-ER 1 30659099 The interaction of FAPP1, a TGN-associated protein, with two ER proteins (VAP and Sac1) prompted us to investigate whether FAPP1 localizes at ERTGoCS and whether the interaction of FAPP1 with Sac1 had any impact on the phosphatase activity of Sac1.; The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00043 Vapb Q9QY76 ER LMCS00047 Sacm1l Q9EP69 ER LMCS00048 Plekha3 Q9ERS4 GA LMCS00058 Vapa Q9WV55 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00034 VAPA_PI(4)P_OSBP OSBP_VAPA(LTP) 3 Human ER-GA; GA-ER 1 24209621 Several proteins at endoplasmic reticulum (ER)-Golgi membrane contact sites contain a PH domain that interacts with the Golgi phosphoinositide PI(4)P, a FFAT motif that interacts with the ER protein VAP-A, and a lipid transfer domain. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00057 VAPA Q9P0L0 ER LMCS00056 OSBP P22059 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00035 VAPA_OSBP OSBP_VAPA(LTP) 2 Human ER-GA; GA-ER 2 12023275 Vesicle-associated Membrane Protein-associated Protein-A (VAP-A) Interacts with the Oxysterol-binding Protein to Modify Export from the Endoplasmic Reticulum. 24209621 Several proteins at endoplasmic reticulum (ER)-Golgi membrane contact sites contain a PH domain that interacts with the Golgi phosphoinositide PI(4)P, a FFAT motif that interacts with the ER protein VAP-A, and a lipid transfer domain. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00057 VAPA Q9P0L0 ER LMCS00056 OSBP P22059 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00036 VAPA_CERT1 NA 2 Human ER-GA; GA-ER 1 16895911 Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00057 VAPA Q9P0L0 ER LMCS00054 CERT1 Q9Y5P4 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00037 SLC27A1_DGAT2 DGAT2_SLC27A1(LTP) 2 Human ER-LD; LD-ER 1 22927462 The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00060 SLC27A1 Q6PCB7 ER LMCS00061 DGAT2 Q96PD7 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00038 Rab18_Nbas_Rint1_Zw10_Stx18_Use1_Bnip1 NA 7 Mouse ER-LD; LD-ER 1 29367353 Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions.; LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP1), resulting in the recruitment of ER to LD and the formation of direct ER–LD contact. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00041 Nbas E9Q411 NA LMCS00051 Zw10 O54692 NA LMCS00052 Bnip1 Q6QD59 NA LMCS00055 Rint1 Q8BZ36 ER LMCS00062 Rab18 P35293 LD LMCS00063 Use1 Q9CQ56 ER LMCS00064 Stx18 Q8VDS8 ER NA NA NA NA CMCS00040 RAB18_NBAS_RINT1_ZW10_STX18_USE1_BNIP1 BNIP1_NBAS(HTP: 1.00); BNIP1_ZW10(HTP: 0.97); STX18_NBAS(HTP: 1.00); STX18_ZW10(LTP); STX18_BNIP1(HTP: 1.00); STX18_RINT1(LTP); USE1_STX18(HTP: 1.00); USE1_ZW10(HTP: 1.00); RINT1_BNIP1(HTP: 1.00); USE1_BNIP1(HTP: 1.00) 7 Human ER-LD; LD-ER 1 29367353 Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions.; LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00068 NBAS A2RRP1 NA LMCS00069 ZW10 O43264 NA LMCS00070 BNIP1 Q12981 NA LMCS00071 RINT1 Q6NUQ1 ER LMCS00072 RAB18 Q9NP72 LD LMCS00073 USE1 Q9NZ43 ER LMCS00074 STX18 Q9P2W9 ER NA NA NA NA CMCS00041 VAPB_VAPA_VPS13C VAPA_VPS13C(HTP: 1.00); VAPB_VPS13C(HTP: 0.90); VAPA_VAPB(LTP) 3 Human ER-LD; LD-ER 1 30093493 An FFAT motif, a short amino acid sequence known to interact with the ER VAMP-associated protein (VAP), is present in the Vps13α region of both proteins as previously noted.; These findings not only confirm the role of the FFAT motif in anchoring these proteins to the ER but also indicate that binding sites for mitochondria (in VPS13A), late endosomes/lysosomes (in VPS13C), and lipid droplets (both proteins) are localized in the C-terminal regions of the two proteins. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00075 VPS13C Q709C8 ER LMCS00091 VAPB O95292 ER LMCS00092 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00042 SNX14_ACSL3 NA 2 Human ER-LD; LD-ER 1 30765438 Multi-time point imaging reveals that Snx14 is recruited to ER microdomains containing the fatty acyl-CoA ligase ACSL3, where nascent LDs bud.We propose that Snx14 is a novel marker for ER-LD contacts and regulates FA-stimulated LD growth. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00076 ACSL3 O95573 LD LMCS00077 SNX14 Q9Y5W7 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00043 BSCL2_LDAF1 LDAF1_BSCL2(HTP: 0.99) 2 Human ER-LD; LD-ER 1 31708432 The ER protein seipin was shown to localize to ER-LD contacts soon after LDs form, but what determines the sites of initial LD biogenesis in the ER is unknown.Here we identify TMEM159, now re-named lipid droplet-assembly factor 1 (LDAF1), as an interaction partner of seipin.Together, LDAF1 and seipin form a 600kDa oligomeric complex that copurifies with TG.LDs form at LDAF1-seipin complexes, and re-localization of LDAF1 to the plasma membrane co-recruits seipin and redirects LD formation to these sites.Once LDs form, LDAF1 dissociates from seipin and moves to the LD surface. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00078 LDAF1 Q96B96 LD LMCS00088 BSCL2 Q96G97 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00044 IML2_PDR16 NA 2 Yeast LD-Parasitophorous Vacuole; Parasitophorous Vacuole-LD 1 26004510 Three of which are proteins that interact with Iml2: Pdr16, Erg6, and Pet10, suggesting that the interaction with these three proteins is somehow required for LD-mediated IB clearance. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00373 IML2 P47031 Parasitophorous Vacuole LMCS00372 PDR16 P53860 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00045 VAPB_VAPA_VPS13A VAPA_VPS13A(HTP: 1.00); VAPB_VPS13A(HTP: 1.00); VAPA_VAPB(LTP) 3 Human ER-LD; LD-ER 1 30093493 An FFAT motif, a short amino acid sequence known to interact with the ER VAMP-associated protein (VAP), is present in the Vps13α region of both proteins as previously noted.; These findings not only confirm the role of the FFAT motif in anchoring these proteins to the ER but also indicate that binding sites for mitochondria (in VPS13A), late endosomes/lysosomes (in VPS13C), and lipid droplets (both proteins) are localized in the C-terminal regions of the two proteins. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00083 VPS13A Q96RL7 ER LMCS00091 VAPB O95292 ER LMCS00092 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00046 VAPB_SNCA SNCA_VAPB(HTP: -) 2 Human ER-MT; MT-ER 1 28337542 alpha-Synuclein is a MAM protein and binds to VAPB but not PTPIP51 in immunoprecipitation assays. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00191 VAPB O95292 ER LMCS00152 SNCA P37840 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00047 STIM1_ESYT1 STIM1_ESYT1(HTP: 14.08) 2 Human ER-PM; PM-ER 1 30850711 E-syt1 re-arranges STIM1 clusters to stabilize ring-shaped ER-PM contact sites and accelerate Ca2+ store replenishment. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00279 STIM1 Q13586 ER; PM LMCS00512 ESYT1 Q9BSJ8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00048 LAM5_ARL1 NA 2 Yeast ER-GA; GA-ER 1 29527758 In support of this, we could experimentally confirm a specific interaction between Lam5 and the Golgi protein Arl1 by co‐immunoprecipitation (data not shown) supporting that Lam5 may be a specific ER/Golgi contact site protein. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00135 LAM5 P43560 NA LMCS00136 ARL1 P38116 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00049 IML2_ERG6 IML2_ERG6(HTP: -) 2 Yeast LD-Parasitophorous Vacuole; Parasitophorous Vacuole-LD 1 26004510 Three of which are proteins that interact with Iml2: Pdr16, Erg6, and Pet10, suggesting that the interaction with these three proteins is somehow required for LD-mediated IB clearance. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00373 IML2 P47031 Parasitophorous Vacuole LMCS00080 ERG6 P25087 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00050 OSBPL5_NPC1 OSBPL5_NPC1(LTP) 2 Human ER-LY; LY-ER 1 21220512 Our results suggest that ORP5 may cooperate with NPC1 to deliver cholesterol from LE/LY to the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00093 OSBPL5 Q9H0X9 ER LMCS00099 NPC1 O15118 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00051 PTPIP51_MOSPD2 NA 2 Human ER-MT; MT-ER 1 29858488 Consequently, MOSPD2 and these organelle‐bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi.; ll these proteins, by binding VAP proteins, are known to build contact sites between the ER and endosomes (STARD3, STARD3NL, ORP1L), mitochondria (PTPIP51), and Golgi (STARD11). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00190 RMDN3 Q96TC7 MT LMCS00094 MOSPD2 Q8NHP6 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00052 VAPB_VAPA_VPS13C VAPB_VPS13C(HTP: 0.90); VAPA_VPS13C(HTP: 1.00); VAPA_VAPB(LTP) 3 Human ER-LY; LY-ER 1 30093493 An FFAT motif, a short amino acid sequence known to interact with the ER VAMP-associated protein (VAP), is present in the Vps13α region of both proteins as previously noted.; These findings not only confirm the role of the FFAT motif in anchoring these proteins to the ER but also indicate that binding sites for mitochondria (in VPS13A), late endosomes/lysosomes (in VPS13C), and lipid droplets (both proteins) are localized in the C-terminal regions of the two proteins. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00095 VPS13C Q709C8 ER LMCS00101 VAPB O95292 ER LMCS00102 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00053 GRAMD1B_NPC1 NA 2 Human ER-LY; LY-ER 1 31537798 We report a role for Niemann-Pick type C protein 1 (NPC1) in tethering ER-endocytic organelle MCS where it interacts with the ER-localised sterol transport protein Gramd1b to regulate cholesterol egress.We show that artificially tethering MCS rescues the cholesterol accumulation that characterises NPC1-deficient cells, consistent with direct lysosome to ER cholesterol transport across MCS. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00096 GRAMD1B Q3KR37 ER LMCS00099 NPC1 O15118 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00054 VAPB_VAPA_OSBP OSBP_VAPB(HTP: 1.00); OSBP_VAPA(LTP); VAPA_VAPB(LTP) 3 Human ER-LY; LY-ER 1 31548609 We show that Oxysterol Binding Protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA or VAPB, deliver cholesterol across ER-lysosome contacts to activate mTORC1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00101 VAPB O95292 ER LMCS00102 VAPA Q9P0L0 ER LMCS00097 OSBP P22059 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00055 VAPB_VAPA_OSBPL1A_RAB7A RAB7A_OSBPL1A(HTP: 0.00); RAB7A_VAPB(HTP: 0.00); RAB7A_VAPA(HTP: 0.00); VAPB_OSBPL1A(LTP); VAPA_VAPB(LTP) 4 Human ER-LY; LY-ER 1 34504082 Lysosomes are then recruited to the division site in a process mediated by the Rab7-ORP1L-VAPs interaction that establishs contact sites with the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00100 OSBPL1A Q9BXW6 NA LMCS00101 VAPB O95292 ER LMCS00102 VAPA Q9P0L0 ER LMCS00104 RAB7A P51149 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00056 ganglioside GD3_AMBRA1_WIPI1_CANX AMBRA1_WIPI1(LTP) 4 Human ER-MT; MT-ER 1 27123544 All in all, these experiments suggested that, under autophagic stimulation, a molecular interaction between ganglioside GD3, AMBRA1 and WIPI1 with the MAM marker CANX clearly occurs. NA NA NA NA NA NA Ganglioside GD3 20057323 C68H121N3O29 CCCCCCCCCCCCCCCC(=O)NC(COC1C(C(C(C(O1)CO)OC2C(C(C(C(O2)CO)O)OC3(CC(C(C(O3)C(C(CO)OC4(CC(C(C(O4)C(C(CO)O)O)NC(=O)C)O)C(=O)O)O)NC(=O)C)O)C(=O)O)O)O)O)C(C=CCCCCCCCCCCCCC)O NA NA NA NA LMCS00147 AMBRA1 Q9C0C7 ER; MT LMCS00148 WIPI1 Q5MNZ9 ER; MT LMCS00199 CANX P27824 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00057 Pdzd8_Rab7a NA 2 Mouse ER-LY; LY-ER 1 31636202 PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00103 Pdzd8 B9EJ80 ER LMCS00105 Rab7a P51150 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00058 PDZD8_RAB7A RAB7A_PDZD8(HTP: 0.00) 2 Human ER-LY; LY-ER 1 31636202 PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00106 PDZD8 Q8NEN9 ER LMCS00104 RAB7A P51149 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00059 PDIA3_CANX CANX_PDIA3(LTP) 2 Human ER-MT; MT-ER 1 23843619 The palmitoylation state of calnexin regulates its interaction with ERp57. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00114 PDIA3 P30101 ER LMCS00199 CANX P27824 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00060 Pdia3_Canx NA 2 Mouse ER-MT; MT-ER 1 23843619 We demonstrate that reversible palmitoylation assigns calnexin to the interaction with SERCA2b and a role in the regulation of Ca2+ transfer to mitochondria, whereas non-palmitoylated calnexin tends to interact with ERp57 to fulfill its role in protein folding and quality control. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00388 Pdia3 P27773 ER LMCS00198 Canx P35564 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00061 Canx_Atp2a2 NA 2 Mouse ER-MT; MT-ER 1 23843619 Our results demonstrate that palmitoylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA) 2b and that this interaction determines ER Ca2+ content and the regulation of ER-mitochondria Ca2+ crosstalk. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00389 Atp2a2 O55143 ER LMCS00198 Canx P35564 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00062 CANX_ATP2A2 CANX_ATP2A2(HTP: 1.56) 2 Human ER-MT; MT-ER 1 23843619 Our results demonstrate that palmitoylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca2+ transport ATPase (SERCA) 2b and that this interaction determines ER Ca2+ content and the regulation of ER-mitochondria Ca2+ crosstalk. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00115 ATP2A2 P16615 ER LMCS00199 CANX P27824 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00063 Orai1_Stim1_Unc93b1 Orai1_Stim1(LTP) 3 Mouse ER-PM; PM-ER 1 35065962 At these ER–PM junctions, STIM1 can trap and gate Orai1 Ca2+ channels, eliciting an influx of Ca2+ from the extracellular milieu into the cytoplasm.; UNC93B1 deficiency might impair the traffic or activity of an adapter protein to reduce STIM1–Orai1 interactions but not STIM1 recruitment. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00098 CRCM1 Q8BWG9 NA LMCS00086 Stim1 P70302 ER; PM LMCS00636 Unc93b1 Q8VCW4 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00064 SCS2_EPO1 SCS2_EPO1(LTP) 2 Yeast ER-PM; PM-ER 1 25083872 One protein identified encoded by the ORF YMR124W, localized to sites of polarized growth including the incipient bud site in G1, the tips of small and medium buds in S and G2, and the septum during cytokinesis. These localizations overlapped with many of the localizations of Scs2DTM-GFP. Ymr124w was an excellent candidate for polarizing Scs2 and we named it Epo1 for ER polarization. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00266 SCS2 P40075 ER LMCS00003 EPO1 P39523 PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00065 Vdac1_Itpr3_Hspa9 NA 3 Rat ER-MT; MT-ER 1 17178908 VDAC1, grp75, and IP3Rs are present in a macromolecular complex at the ER-mitochondria interface. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00121 Hspa9 P48721 MT LMCS00122 Vdac1 Q9Z2L0 MT LMCS00175 Itpr3 Q63269 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00066 GEM1_MMM1_MDM10_MDM12_MDM34 GEM1_MDM34(LTP); GEM1_MMM1(LTP); MMM1_MDM34(LTP); MDM12_GEM1(LTP); MDM12_MDM34(LTP); MDM12_MMM1(LTP); MDM10_MDM12(LTP); MDM10_MDM34(LTP); MDM10_GEM1(LTP) 5 Yeast ER-MT; MT-ER 2 21825164 Here we purified ERMES complexes and identified the Ca2+-binding Miro GTPase Gem1 as an integral component of ERMES. 26056272 For contact sites with mitochondria, a multisubunit complex called the endoplasmic reticulum-mitochondrial encounter structure (ERMES) has been shown to provide a bridge to the ER in the Yeast Saccharomyces cerevisiae.The ERMES comprises the soluble protein Mdm12, the ER-resident membrane protein Mmm1, two outer mitochondrial membrane proteins, Mdm10 and Mdm34, and the mitochondrial regulatory Miro GTPase Gem1. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00127 GEM1 P39722 MT LMCS00178 MDM34 P53083 MT LMCS00181 MMM1 P41800 ER LMCS00180 MDM10 P18409 MT LMCS00179 MDM12 Q92328 NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00067 PI(4,5)P2_NUM1_MDM36 NUM1_MDM36(LTP) 3 Yeast ER-MT-PM; PM-MT-ER 1 23341591 Our data indicate that Num1, together with Mdm36, forms a physical tether that robustly anchors mitochondria to the cell cortex but plays no direct role in mitochondrial division. NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00109 NUM1 Q00402 ER; MT LMCS00110 MDM36 Q06820 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00068 ATG14_STX17 ATG14_STX17(LTP) 2 Human ER-MT; MT-ER 1 23455425 The ER-resident SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it to the ER-mitochondria contact site. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00132 STX17 P56962 ER; MT LMCS00133 ATG14 Q6ZNE5 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00069 Nlrp3_Pycard Nlrp3_Pycard(LTP) 2 Mouse ER-MT; MT-ER 1 23502856 We found that ASC on Mitochondrion mediated the signal from NLRP3 to caspase-1.These findings indicated that dynein-dependent transport of Mitochondrion along microtubules facilitated the approximation of ASC on Mitochondrion to NLRP3 on the endoplasmic reticulum in response to inducers of the NLRP3 inflammasome. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00134 Pycard Q9EPB4 MT LMCS00193 Nlrp3 Q8R4B8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00070 NUM1_MDM36 NUM1_MDM36(LTP) 2 Yeast MT-PM; PM-MT 1 27241910 Num1CC interacts directly with Mdm36 and phospholipid membranes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00365 NUM1 Q00402 NA LMCS00366 MDM36 Q06820 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00071 VAPA_VAPB_CERT1 VAPA-VAPB(LTP) 3 Human ER-Endosome; Endosome-ER 1 33124732 The endoplasmic reticulum possesses three major receptors, VAP‐A, VAP‐B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts; onventional FFATs (illustrated here with STARD11/CERT) which allow the formation of a stable complex between VAPs/MOSPD2 and thus the formation of MCSs. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER LMCS00563 CERT1 Q9Y5P4 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00072 MOSPD2_CERT1 / 2 Human ER-Endosome; Endosome-ER 1 33124732 The endoplasmic reticulum possesses three major receptors, VAP‐A, VAP‐B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts; onventional FFATs (illustrated here with STARD11/CERT) which allow the formation of a stable complex between VAPs/MOSPD2 and thus the formation of MCSs. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00019 MOSPD2 Q8NHP6 ER LMCS00563 CERT1 Q9Y5P4 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00074 EMC5_EMC2_EMC1_TOM5 EMC5_EMC1(LTP); EMC5_EMC2(LTP); TOM5_EMC2(LTP); TOM5_EMC5(LTP); EMC1_EMC2(LTP); TOM5_EMC1(LTP) 4 Yeast ER-MT; MT-ER 1 25313861 We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00143 TOM5 P80967 MT LMCS00237 EMC1 P25574 ER LMCS00238 EMC2 P47133 ER LMCS00239 EMC5 P40540 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00075 LAM6_TOM70 LAM6_TOM70(LTP) 2 Yeast ER-MT; MT-ER 1 25987606 Ltc1 localized to ER-Mitochondrion and ER-vacuole contacts via the Mitochondrionl import receptors Tom70,71 and the vacuolar protein Vac8, respectively. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00144 TOM70 P07213 MT LMCS00196 LAM6 Q08001 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00076 LAM6_TOM71 LAM6_TOM71(LTP) 2 Yeast ER-MT; MT-ER 1 25987606 Ltc1 localized to ER-Mitochondrion and ER-vacuole contacts via the Mitochondrionl import receptors Tom70,71 and the vacuolar protein Vac8, respectively. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00145 TOM71 P38825 MT LMCS00196 LAM6 Q08001 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00077 OSBPL5_OSBPL8_RMDN3 OSBPL5_OSBPL8(HTP: 1.00) 3 Human ER-MT; MT-ER 1 27113756 In summary, we have demonstrated that the mammalian ORP5 and ORP8 proteins localize to ER-Mitochondrionl MCS, in addition to ER-PM contact sites.Their targeting to ER-Mitochondrion MCS and interaction with the Mitochondrionl PTPIP51 requires a functional lipid-binding or transfer ORD domain. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00146 OSBPL5 Q9H0X9 ER LMCS00190 RMDN3 Q96TC7 MT LMCS00197 OSBPL8 Q9BZF1 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00078 Sigmar1_Itpr3 NA 2 Mouse ER-MT; MT-ER 1 27821430 All these data indicate that the Sig1R activation that regulates IP3R3‐mediated intracellular Ca2+ flux at the MAM is crucial to prevent MAM disruption in motor neurons both in vitro and in vivo. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00149 Sigmar1 O55242 ER; MT LMCS00207 Itpr3 P70227 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00079 Sigmar1_Sel1l_Syvn1 NA 3 Mouse ER-MT; MT-ER 1 32193362 Sel1L-Hrd1 ERAD regulates MAM and Mitochondrionl dynamics via SigmaR1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00149 Sigmar1 O55242 ER LMCS00167 Syvn1 Q9DBY1 ER LMCS00168 Sel1l Q9Z2G6 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00080 AHCYL1_BCL2L10 NA 2 Human ER-MT; MT-ER 1 27995898 IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00150 BCL2L10 Q9HD36 ER; MT LMCS00208 AHCYL1 O43865 ER; MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00081 Ahcyl1_Bcl2l10 NA 2 Mouse ER-MT; MT-ER 1 27995898 IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00151 Bcl2l10 Q9Z0F3 ER; MT LMCS00209 Ahcyl1 Q80SW1 ER; MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00082 Ern1_Marchf5 NA 2 Mouse ER-MT; MT-ER 1 31368599 These results show that IRE1α and MITOL are enriched at the MAM.; IRE1α is a novel substrate for MITOL; Endogenous IRE1α was found to be co‐precipitated with endogenous MITOL. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00142 Ern1 Q9EQY0 ER LMCS00192 Marchf5 Q3KNM2 ER; MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00083 TGM2_VDAC1_ITPR1_HSPA9 TGM2_HSPA9(LTP) 4 Human ER-MT; MT-ER 1 30590033 GRP75 localizes in Mitochondrion-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+from the endoplasmic reticulum (ER) to Mitochondrion.TG2 interacts with GRP75 in mitochondria-associated membranes (MAMs). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00157 TGM2 P21980 MT LMCS00173 VDAC1 P21796 MT LMCS00174 HSPA9 P38646 MT LMCS00213 ITPR11 Q14643 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00084 Vapb_Rmdn3 NA 2 Rat ER-MT; MT-ER 3 30841933 The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. 28337542 However, many neuronal functions damaged in Parkinson’s disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. 35090998 Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. NA NA NA NA NA NA NA NA NA NA LMCS00159 Rmdn3 Q66H15 MT LMCS00160 Vapb Q9Z269 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00085 Mfn2_Mfn1 NA 2 Rat ER-MT; MT-ER 1 35090998 Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00427 Mfn2 Q8R500 MT LMCS00428 Mfn1 Q8R4Z9 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00086 ERN1_MARCHF5 ERN1_MARCHF5(LTP) 2 Human ER-MT; MT-ER 1 31368599 These results show that IRE1α and MITOL are enriched at the MAM.; IRE1α is a novel substrate for MITOL; Endogenous IRE1α was found to be co‐precipitated with endogenous MITOL. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00164 ERN1 O75460 ER LMCS00225 MARCHF5 Q9NX47 ER; MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00087 PIGBOS_CLCC1 NA 2 Human ER-MT; MT-ER 1 31653868 PIGBOS localizes to the mitochondrial outer membrane where it interacts with the ER protein CLCC1 at ER-mitochondria contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00165 PIGBOS A0A0B4J2F0 MT LMCS00166 CLCC1 Q96S66 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00088 Bcap31_Fis1 NA 2 Rat ER-MT; MT-ER 1 35090998 Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00169 Fis1 P84817 MT LMCS00170 Bcap31 Q6AY58 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00089 VDAC1_ITPR1_HSPA9 NA 3 Human ER-MT; MT-ER 3 29367884 Following GRP75 silencing, we found that IP3R1-VDAC1 interaction sites, as indicated by the red punctae (Figure 1c), were reduced compared with control cells. 30590033 GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. 24947355 Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains between both organelles involved in Ca2+ exchange, through the voltage-dependent anion channel (VDAC)-1/glucose-regulated protein 75 (Grp75)/inositol 1,4,5-triphosphate receptor (IP3R)-1 complex, and regulating energy metabolism. NA NA NA NA NA NA NA NA NA NA LMCS00173 VDAC1 P21796 MT LMCS00174 HSPA9 P38646 MT LMCS00213 ITPR11 Q14643 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00090 MFN1_MFN2 MFN1_MFN2(LTP) 2 Human ER-MT; MT-ER 1 19052620 An in vitro assay as well as genetic and biochemical evidences support a model in which mitofusin 2 on the ER bridges the two organelles by engaging in homotypic and heterotypic complexes with mitofusin 1 or 2 on the surface of Mitochondrion. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00177 MFN1 Q8IWA4 MT LMCS00176 MFN2 O95140 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00091 MFN2_MFN2 MFN2_MFN2(LTP) 2 Human ER-MT; MT-ER 1 19052620 An in vitro assay as well as genetic and biochemical evidences support a model in which mitofusin 2 on the ER bridges the two organelles by engaging in homotypic and heterotypic complexes with mitofusin 1 or 2 on the surface of Mitochondrion. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00176 MFN2 O95140 MT LMCS00176 MFN2 O95140 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00092 BCAP31_FIS1 BCAP31_FIS1(LTP) 2 Human ER-MT; MT-ER 1 21183955 Fis1 and Bap31 bridge the Mitochondrion-ER interface to establish a platform for apoptosis induction. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00186 FIS1 Q9Y3D6 MT LMCS00187 BCAP31 P51572 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00093 BCAP31_TOMM40_NDUFS4 BCAP31_TOMM40(LTP); BCAP31_NDUFS4(LTP) 3 Human ER-MT; MT-ER 1 31206022 By performing database analyses and co-immunoprecipitation assays, I identified that mitochondrial proteins Tom40 and pre-NDUFS4/NDUFS4 are associating partners of BAP31 at the ER-mitochondria contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00187 BCAP31 P51572 ER LMCS00223 TOM40 O96008 MT LMCS00224 NDUFS4 O43181 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00094 ERP44_ITPR3 NA 2 Human ER-MT; MT-ER 1 21854214 ERp44 distributes in ERGIC, ER, and MAM, in-teracting preferentially with reduced IP3R1 and inhibiting the channel activity. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00188 ERP44 Q9BS26 ER LMCS00229 ITPR3 Q14573 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00095 VAPB_RMDN3 VAPB_RMDN3(LTP) 2 Human ER-MT; MT-ER 3 22131369 Modulating PTPIP51 expression alters the association of VAPB with Mitochondrion. 28132811 Finally, we demonstrate that the mechanism by which the VAPB-PTPIP51 tethers regulate autophagy involves their role in mediating delivery of Ca2+ to Mitochondrion from ER stores. 28337542 alpha-Synuclein is a MAM protein and binds to VAPB but not PTPIP51 in immunoprecipitation assays. NA NA NA NA NA NA NA NA NA NA LMCS00190 RMDN3 Q96TC7 MT LMCS00191 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00096 VPS13A_VAPB_VAPA VAPA_VPS13A(HTP: 1.00); VAPB_VPS13A(HTP: 1.00); VAPA_VAPB(LTP) 3 Human ER-MT; MT-ER 2 30093493 An FFAT motif, a short amino acid sequence known to interact with the ER VAMP-associated protein (VAP), is present in the Vps13α region of both proteins as previously noted.; These findings not only confirm the role of the FFAT motif in anchoring these proteins to the ER but also indicate that binding sites for mitochondria (in VPS13A), late endosomes/lysosomes (in VPS13C), and lipid droplets (both proteins) are localized in the C-terminal regions of the two proteins. 30741634 VPS13A interacts with the ER residing protein VAP-A via its FFAT domain.Interaction with Mitochondrion is mediated via its C-terminal domain.In VPS13A-depleted cells, ER-Mitochondrion contact sites are decreased, Mitochondrion are fragmented and mitophagy is decreased.; Our results showed that VPS13A also interacts with VAP-B in a FFAT dependent manner, consistent with the fact that VAP-A and VAP-B functions are often redundant. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00219 VPS13A Q96RL7 MT LMCS00191 VAPB O95292 ER LMCS00220 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00097 Esyt1_Synj2bp NA 2 Mouse ER-MT; MT-ER 1 https://doi.org/10.1101/2022.11.14.516495 The deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs, indicating that the ESYT1-SYN2JBP complex plays a role in tethering ER and mitochondria. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00595 Esyt1 Q3U7R1 ER LMCS00138 Synj2bp Q9D6K5 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00098 VAPB_VAPA_OSBPL2 VAPA_OSBPL2(HTP: 1.00); VAPA_VAPB(LTP); VAPB_OSBPL2(HTP: 1.00) 3 Human ER-LD; LD-ER 1 25420878 We provide evidence that complexes of human ORP2 and VAPs at ER–lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00091 VAPB O95292 ER LMCS00092 VAPA Q9P0L0 ER LMCS00028 OSBPL2 Q9H1P3 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00099 Fundc1_Canx NA 2 Mouse ER-MT; MT-ER 1 27145933 Here, we describe a new pathway mediating Mitochondrionl fission and subsequent mitophagy under hypoxic conditions.FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00198 Canx P35564 ER LMCS00202 Fundc1 Q9DB70 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00100 FUNDC1_CANX NA 2 Human ER-MT; MT-ER 2 27145933 FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. 27314574 We have shown that the outer Mitochondrionl membrane protein FUNDC1 is a novel Mitochondrionl-associated membrane (MAM) protein, enriched at the MAM by interacting with the ER resident protein CANX (calnexin) under hypoxia.As mitophagy proceeds, it dissociates from CANX and preferably recruits DNM1L. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00199 CANX P27824 ER LMCS00201 FUNDC1 Q8IVP5 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00101 FUNDC1_DNM1L NA 2 Human ER-MT; MT-ER 2 27145933 Triple-color imaging further demonstrated that FUNDC1 and DRP1 puncta are closely associated with lacunae formed by ER lattices in hypoxic conditions. 27314574 We have shown that the outer Mitochondrionl membrane protein FUNDC1 is a novel Mitochondrionl-associated membrane (MAM) protein, enriched at the MAM by interacting with the ER resident protein CANX (calnexin) under hypoxia.As mitophagy proceeds, it dissociates from CANX and preferably recruits DNM1L. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00200 DNM1L O00429 ER LMCS00201 FUNDC1 Q8IVP5 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00102 Fundc1_Dnm1l NA 2 Mouse ER-MT; MT-ER 1 27145933 We found that DRP1 is also enriched in the MAM fraction in hypoxic cells and localizes with FUNDC1 in the MAM as evidenced by double immunogold EM. Triple‐color imaging further demonstrated that FUNDC1 and DRP1 puncta are closely associated with lacunae formed by ER lattices in hypoxic conditions. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00203 Dnm1l Q8K1M6 ER LMCS00202 Fundc1 Q9DB70 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00103 Fundc1_Itpr2 NA 2 Mouse ER-MT; MT-ER 1 28942427 In cardiomyocytes, FUNDC1 binds to IP3R2 to form MAMs, which modulates Ca2+ release from ER into mitochondria and cytosols. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00212 Itpr2 Q9Z329 MT LMCS00202 Fundc1 Q9DB70 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00104 Mfn1_Mfn2 Mfn1_Mfn2(LTP) 2 Mouse ER-MT; MT-ER 2 27647893 Structurally, homo- or heterotypic in transinteraction between the ER-Mfn2 and Mitochondrionl Mfn2 or Mfn1 are supported by Mfn2’s role in Mitochondrionl tethering and fusion. 19052620 An in vitro assay as well as genetic and biochemical evidences support a model in which mitofusin 2 on the ER bridges the two organelles by engaging in homotypic and heterotypic complexes with mitofusin 1 or 2 on the surface of Mitochondrion. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00206 Mfn1 Q811U4 MT LMCS00205 Mfn2 Q80U63 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00105 Mfn2_Mfn2 NA 2 Mouse ER-MT; MT-ER 2 27647893 Structurally, homo- or heterotypic in transinteraction between the ER-Mfn2 and Mitochondrionl Mfn2 or Mfn1 are supported by Mfn2’s role in Mitochondrionl tethering and fusion. 19052620 Mitofusin 2 tethers endoplasmic reticulum to Mitochondrion Mitofusin 2 ablation increases endoplasmic reticulum-Mitochondrion coupling. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00205 Mfn2 Q80U63 MT LMCS00205 Mfn2 Q80U63 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00106 Pml_Itpr3_Akt1_Ppp2r2b Akt1_Ppp2r2b(LTP) 4 Mouse ER-MT; MT-ER 1 21030605 We found that Pml, IP3R3, Akt, and PP2a colocalize in high molecular weight complexes, supporting their possible interaction in the native state.; We show that extranuclear Pml was specifically enriched at the endoplasmic reticulum (ER) and at the mitochondria-associated membranes, signaling domains involved in ER-to-mitochondria calcium ion (Ca2+) transport and in induction of apoptosis. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00207 Itpr3 P70227 ER LMCS00385 pml Q60953 ER LMCS00386 Akt1 P31750 NA LMCS00387 Ppp2r2b Q6ZWR4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00107 Itpr3_Hspa9_Vdac1_Park7 Itpr3_Hspa9(LTP); Park7_Itpr3(LTP); Park7_Hspa9(LTP); Park7_Vdac1(LTP) 4 Mouse ER-MT; MT-ER 1 31767755 DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-GRP75-VDAC1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00207 Itpr3 P70227 ER LMCS00216 Hspa9 P38647 MT LMCS00230 Vdac1 Q60932 MT LMCS00231 Park7 Q99LX0 ER; MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00108 VDAC1_GSK3B NA 2 Human ER-MT; MT-ER 1 29523440 Rapid activation of Akt by mTORC2 led to inhibition of Gsk-3b at mitochondria-ER junctions, enabling recruitment of hexokinase I (HK-I) to the mitochondrial channel, VDAC. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00214 GSK3B P49841 ER LMCS00173 VDAC1 P21796 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00109 VAPA_VPS13A VAPA_VPS13A(HTP: 1.00) 2 Human ER-MT; MT-ER 1 30741634 VPS13A interacts with the ER residing protein VAP-A via its FFAT domain.Interaction with Mitochondrion is mediated via its C-terminal domain.In VPS13A-depleted cells, ER-Mitochondrion contact sites are decreased, Mitochondrion are fragmented and mitophagy is decreased. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00220 VAPA Q9P0L0 ER LMCS00219 VPS13A Q96RL7 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00110 INF2_SPIRE1 NA 2 Human ER-MT; MT-ER 1 26305500 We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00221 SPIRE1 Q08AE8 MT LMCS00222 INF2 Q27J81 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00111 SEC22B_STIM1 SEC22B_STIM1(HTP: 105.00) 2 Human ER-PM; PM-ER 1 37794132 Total internal reflection microscopy (TIRF) analysis allowed simultaneous imaging of Sec22b and STIM1 recruitment to ER-PM MCS, visible as puncta at the PM plane, during the activation of store-operated Ca2+ entry (SOCE) . NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00254 SEC22B O75396 ER LMCS00279 STIM1 Q13586 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00112 MMM1_MDM12 MMM1_MDM12(LTP) 2 Yeast ER-MT; MT-ER 1 29279306 Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00181 MMM1 P41800 ER LMCS00179 MDM12 Q92328 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00113 ITPR3_HSPA9_VDAC1 ITPR3_VDAC1(LTP); ITPR3_HSPA9(LTP) 3 Human ER-MT; MT-ER 2 17178908 VDAC1, grp75, and IP3Rs are present in a macromolecular complex at the ER-mitochondria interface. 29367884 In fact, we showed that GRP75 knockdown and pharmacological inhibition reduced the number of interaction sites between IP3R1 and VDAC1, thus reduced ER-mitochondrial coupling. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00173 VDAC1 P21796 MT LMCS00174 HSPA9 P38646 MT LMCS00229 ITPR3 Q14573 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00114 SIGMAR1_ITPR3 SIGMAR1_ITPR3(LTP) 2 Human ER-MT; MT-ER 1 27821430 All these data indicate that the Sig1R activation that regulates IP3R3‐mediated intracellular Ca2+ flux at the MAM is crucial to prevent MAM disruption in motor neurons both in vitro and in vivo. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00229 ITPR3 Q14573 NA LMCS00233 SIGMAR1 Q99720 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00115 PEX3_INP1 PEX3_INP1(LTP) 2 Yeast ER-Peroxisome; Peroxisome-ER 1 23900285 Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00240 PEX3 P28795 ER; Peroxisome LMCS00241 INP1 Q03694 Peroxisome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00116 VAPB_VAPA_ACBD5 VAPA_ACBD5(HTP: 7.17); VAPB_ACBD5(HTP: 22.05); VAPA_VAPB(LTP) 3 Human ER-Peroxisome; Peroxisome-ER 1 28108526 VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00242 ACBD5 Q5T8D3 Peroxisome LMCS00243 VAPA Q9P0L0 ER LMCS00255 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00117 VAPB_ACBD4 VAPB_ACBD4(HTP: 1.00) 2 Human ER-Peroxisome; Peroxisome-ER 1 28463579 Here, we characterize acyl-CoA binding domain protein 4 (ACBD4) as a tail-anchored peroxisomal membrane protein which interacts with the ER protein, vesicle-associated membrane protein-associated protein-B (VAPB) to promote peroxisome-ER associations. NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00244 ACBD4 Q8NC06 Peroxisome LMCS00255 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00118 PI(4,5)P2_ESYT2_ESYT1_ESYT3 ESYT1_ESYT2(LTP) 4 Human ER-Peroxisome; Peroxisome-ER 1 31144242 Depletion of peroxisomal PI(4,5)P2 or E-Syts hampers peroxisome-ER membrane contact formation and blocks cholesterol transport from one organelle to another, resulting in cholesterol accumulation in lysosomes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00245 ESYT2 A0FGR8 ER LMCS00246 ESYT3 A0FGR9 ER LMCS00247 ESYT1 Q9BSJ8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00119 ABCD3_ATF6 NA 2 Human ER-Peroxisome; Peroxisome-ER 1 31149896 Ceapins induce the neomorphic association of ER and peroxisomes by directly tethering the cytosolic domain of ATF6a to ABCD3’s transmembrane regions without inhibiting or depending on ABCD3 transporter activity. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00248 ATF6 P18850 ER LMCS00249 ABCD3 P28288 Peroxisome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00120 PEX24_PEX32_INP1 NA 3 Yeast ER-Peroxisome; Peroxisome-ER 1 32665322 This indicates that Pex11 contributes to Pex32-dependent peroxisome-ER contact formation.Pex24 and Pex32 are required to tether peroxisomes to the ER for organelle biogenesis, positioning and segregation in Yeast. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00250 PEX32 A4GFD3 ER LMCS00251 INP1 C0JW63 Peroxisome LMCS00252 PEX24 A4GFC9 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00121 Jph1_Jph2_Jph3 NA 3 Mouse ER-PM; PM-ER 1 10949023 Junctional complexes between the plasma membrane (PM) and endoplasmic or sarcoplasmic reticulum (ER or SR) are a common feature of all excitable cell types and mediate cross-talk between cell surface and intracellular ion channels.We have identified the junctophilins (JPs), a novel conserved family of proteins that are components of the junctional complexes. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00257 Jph2 Q9ET78 ER LMCS00258 Jph1 Q9ET80 ER LMCS00256 Jph3 Q9ET77 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00122 ORAI1_STIM1_TRPC1 STIM1_ORAI1(LTP); STIM1_TRPC1(LTP) 3 Human ER-PM; PM-ER 1 18644792 Orai1 Mediates the Interaction between STIM1 and hTRPC1 and Regulates the Mode of Activation of hTRPC1-forming Ca2+ Channels. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00260 ORAI1 Q96D31 PM LMCS00261 TRPC1 P48995 PM LMCS00279 STIM1 Q13586 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00123 OSBPL2_OSBPL1A_VAPA_VAPB VAPA_OSBPL2(HTP: 1.00); VAPB_OSBPL1A(LTP); VAPB_OSBPL2(HTP: 1.00); VAPA_VAPB(LTP); VAPA_OSBPL1A(LTP) 4 Human ER-PM; PM-ER 1 21062391 The results provide the first evidence for a role of mammalian ORPs in sterol transport from the PM to the ER and LDs, and uncover a role for VAPs in maintaining ORP levels. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00262 OSBPL1A Q9BXW6 NA LMCS00263 OSBPL1A Q9H1P3 PM LMCS00281 VAPA Q9P0L0 ER LMCS00280 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00124 SCS2_SCS22_IST2_TCB3_TCB1_TCB2 IST2_SCS2(LTP); IST2_TCB3(LTP); IST2_TCB1(LTP); IST2_TCB3(LTP); TCB1_TCB2(LTP); TCB1_TCB3(LTP); TCB2_TCB3(LTP) 6 Yeast ER-PM; PM-ER 1 23237950 We have identified Ist2 (related to the mammalian TMEM16 family of ion channels) and the tricalbins (C2 domain-containing proteins similar to the extended synaptotagmin-like proteins E-Syt1/2/3) as ER tether proteins that function with the VAP orthologs Scs2 and Scs22 to establish junctions between the ER and PM. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00265 IST2 P38250 ER LMCS00266 SCS2 P40075 ER LMCS00267 TCB2 P48231 ER; PM LMCS00268 TCB3 Q03640 ER; PM LMCS00269 TCB1 Q12466 ER; PM LMCS00270 SCS22 Q6Q595 ER NA NA NA NA NA NA NA NA CMCS00125 VAPB_PITPNM1 VAPB_PITPNM1(HTP: 1.00) 2 Human ER-PM; PM-ER 1 26028218 These results confirmed that Nir2 was an ER-associated peripheral protein in the quiescent state but after PLC activation it also formed contacts with the PM. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00271 PITPNM1 O00562 PM LMCS00280 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00126 ORAI1_TRPC1 NA 2 Human ER-PM; PM-ER 1 19249086 These studies establish a molecular mechanism for store-operated Ca2+ entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00260 ORAI1 Q96D31 NA LMCS00279 STIM1 Q13586 ER; PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00127 GRAMD2A_STIM1 NA 2 Human ER-PM; PM-ER 1 29469807 They localize to ER-PM contact sites GRAMD2a pre-marks a subset of ER-PM contacts used for STIM1 recruitment. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00275 GRAMD2A Q8IUY3 ER LMCS00279 STIM1 Q13586 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00128 GRAMD2A_ESYT2_ESYT3 NA 3 Human ER-PM; PM-ER 1 29469807 GRAMD2a, but not GRAMD1a, co-localizes with the E-Syt2/3 tethers at ER-PM contacts in a PIP lipid-dependent manner. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00275 GRAMD2A Q8IUY3 ER LMCS00282 ESYT2 A0FGR8 ER LMCS00283 ESYT3 A0FGR9 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00129 YSP2_LAM4_LAM1_SIP3 YSP2_LAM4(LTP) 4 Yeast ER-PM; PM-ER 1 26001273 StART-like domains from Ysp2p and its paralog Lam4p specifically bind sterols, and Ysp2p, Lam4p and their homologs Ysp1p and Sip3p target punctate ER-PM contact sites distinct from those occupied by known ER-PM tethers. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00284 YSP2 Q06681 NA LMCS00285 LAM4 P38800 ER LMCS00391 SIP3 P38717 ER LMCS00401 LAM1 P38851 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00130 YSP2_LAM4_LAM1_SIP4_DGR2_YMR102C_LAM6_SLM1 YSP2_LAM4(LTP) 8 Yeast ER-PM; PM-ER 1 28774891 Thus, together with proteomic data, cytological data support the existence of a novel distinct domain of the PM, which we term the MCL, comprised of the paralogous protein pairs of Ltc3/4, Lam1/Sip3, and Dgr2/Ymr102c.; Ltc1 colocalizes with MCL proteins and partially colocalizes with Slm1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00284 YSP2 Q06681 NA LMCS00285 LAM4 P38800 ER LMCS00391 SIP3 P38717 ER LMCS00401 LAM1 P38851 ER LMCS00408 DGR2 P32330 NA LMCS00409 YMR102C Q03177 NA LMCS00410 LAM6 Q08001 ER LMCS00411 SLM1 P40485 NA CMCS00131 Nvj3_MDM1 Nvj3_MDM1(LTP) 2 Yeast ER-Vacuole; Vacuole-ER 2 26283797 We also show that Mdm1 and its paralogue Ydr179w-a (named Nvj3 in this study) localize to ER-vacuole MCSs independently of established tether Nvj1. 29146766 Here, we show that yeast ER–vacuole contact sites (NVJs) serve as sites for generating LDs in response to nutritional stress, and identify the ER–vacuole tether Mdm1 as a protein that demarcates sites of NVJ‐associated LD budding. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00287 MDM1 Q01846 ER LMCS00288 Nvj3 Q03983 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00132 LAM6_VAC8 LAM6_VAC8(LTP) 2 Yeast ER-Vacuole; Vacuole-ER 1 25987606 Ltc1 localized to ER-Mitochondrion and ER-vacuole contacts via the Mitochondrionl import receptors Tom70,71 and the vacuolar protein Vac8, respectively. NA NA NA NA NA NA PI(3)P 643964 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00289 VAC8 P39968 Vacuole LMCS00290 LAM6 Q08001 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00133 VAPA_VAPB_PI(3)P_ULK1_WIPI2_RB1CC1 RB1CC1_ULK1(LTP); RB1CC1_VAPB(LTP); RB1CC1_VAPA(LTP); VAPA_VAPB(LTP) 6 Human IM-ER; ER-IM 1 29628370 APs directly interact with FIP200 and ULK1 through their conserved FFAT motifs and stabilize the ULK1, FIP200 complex at the autophagosome formation sites on the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00293 RB1CC1 Q8TDY2 NA LMCS00295 ULK1 O75385 NA LMCS00296 VAPB O95292 ER LMCS00297 VAPA Q9P0L0 ER LMCS00294 WIPI2 Q9Y4P8 NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00134 OSH2_SCS2 OSH2_SCS2(LTP) 2 Yeast ER-PM; PM-ER 1 12727870 For Osh2p and Osh3p, a second site is distributed uniformly around the entire cell periphery, possibly associated with the plasma membrane (data not shown). Thus, the interaction with Scs2p appears to restrict Osh proteins to regions of the ER adjacent to the other sites they target. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00278 OSH2 Q12451 PM LMCS00266 SCS2 P40075 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00135 OSH3_SCS2 OSH3_SCS2(LTP) 2 Yeast ER-PM; PM-ER 1 12727870 For Osh2p and Osh3p, a second site is distributed uniformly around the entire cell periphery, possibly associated with the plasma membrane (data not shown). Thus, the interaction with Scs2p appears to restrict Osh proteins to regions of the ER adjacent to the other sites they target. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00277 OSH3 P38713 PM LMCS00266 SCS2 P40075 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00139 MTOR_RPTOR_MLST8_RHEB NA 4 Human LY-GA; GA-LY 1 29222112 Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the Golgi-lysosome contact site. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00321 MTOR P42345 LY LMCS00323 RPTOR Q8N122 LY LMCS00319 MLST8 Q9BVC4 LY LMCS00320 RHEB Q15382 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00140 Mtor_Rptor_Mlst8_Rheb NA 4 Mouse LY-GA; GA-LY 1 29222112 Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the Golgi-lysosome contact site. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00318 Mtor Q9JLN9 LY LMCS00317 Rptor Q8K4Q0 LY LMCS00316 Mlst8 Q9DCJ1 LY LMCS00322 Rheb Q921J2 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00141 PLIN2_Hspa8 NA 2 Mouse LY-LD; LD-LY 1 26902588 This motif is recognized by HSPA8 Hsc70 (heat shock 70 kDa protein 8) that targets the protein to lysosomes.At the lysosome, the substrate proteins bind to the CMA receptor, LAMP2A (lysosome-associated membrane protein 2A),which then organizes into a multimeric complex for translocation of the substrate into the lumen. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00324 Hspa8 P63017 NA LMCS00326 PLIN2 P43883 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00142 PI(4,5)P2_SYT7 NA 2 Human LY-Peroxisome 1 25860611 We further demonstrated that peroxisome forms transient lysosome-peroxisome membrane contact (LPMC) withlysosomethrough the binding of peroxisomal lipid PI(4,5)P2by lysosomal proteinSynaptotagminVII (Syt7). NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00327 SYT7 O43581 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00143 PI(4,5)P2_Syt7 NA 2 Mouse LY-Peroxisome 1 25860611 We further demonstrated that peroxisome forms transient lysosome-peroxisome membrane contact (LPMC) withlysosomethrough the binding of peroxisomal lipid PI(4,5)P2by lysosomal proteinSynaptotagminVII (Syt7). NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00329 Syt7 Q9R0N7 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00145 ALS2_RAB5A NA 2 Human MT-Endosome; Endosome-MT 1 29469808 These findings define a novel pathway whereby Alsin catalyzes the assembly of the Rab5 endocytic machinery on Mitochondrion. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00336 RAB5A P20339 Endosome; MT LMCS00337 ALS2 Q96Q42 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00146 Mfn2_Plin1 NA 2 Mouse MT-LD; LD-MT 1 28348166 Importantly, Mfn2 directly interacts with perilipin 1, facilitating the interaction between the mitochondria and the lipid droplet in response to adrenergic stimulation. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00341 Mfn2 Q80U63 MT LMCS00342 Plin1 Q8CGN5 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00147 Acsl1_Snap23_Vamp4 NA 3 Mouse MT-LD; LD-MT 1 30190326 Thus, the interaction of SNAP23 and VAMP4 with ACSL1 during glucose deprivation, a condition that primes the cell to oxidize more FA, is consistent with tethering of LDs to the OMM during FA oxidation. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00343 Acsl1 P41216 MT LMCS00348 Snap23 O09044 MT LMCS00325 Vamp4 O70480 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00148 TBC1D15_RAB7A TBC1D15_RAB7A(HTP: 0.61) 2 Human MT-LY; LY-MT 1 29364868 Contact formation was promoted by active GTP-bound lysosomal RAB7, and contact untethering was mediated by recruitment of the RAB7 GTPase-activating protein TBC1D15 to mitochondria by FIS1 to drive RAB7 GTP hydrolysis and thereby release contacts. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00349 RAB7A P51149 LY LMCS00350 TBC1D15 Q8TC07 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00149 ESYT1_SYNJ2BP ESYT1_SYNJ2BP(LTP) 2 Human ER-MT; MT-ER 1 https://doi.org/10.1101/2022.11.14.516495 The deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs, indicating that the ESYT1-SYN2JBP complex plays a role in tethering ER and mitochondria. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00594 ESYT1 Q9BSJ8 ER LMCS00335 SYNJ2BP P57105 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00150 PEX11_MDM34 PEX11_MDM34(LTP) 2 Yeast MT-Peroxisome; Peroxisome-MT 1 25769804 Moreover, we found that Pex11 and Mdm34 physically interact and that Pex11 plays a role in establishing the contact sites between peroxisomes and mitochondria through the ERMES complex. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00356 MDM34 P53083 MT LMCS00357 PEX11 Q12462 Peroxisome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00151 FZO1_PEX34 NA 2 Yeast MT-Peroxisome; Peroxisome-MT 1 29720625 We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00360 PEX34 P25584 Peroxisome LMCS00361 FZO1 P38297 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00152 SWH1_SCS2 SWH1_SCS2(LTP) 2 Yeast Nucleus-Vacuole; Vacuole-Nucleus 1 12727870 This implies that the interaction with Scs2p is integrated with other targeting signals. For Osh1p, the other targeting determinant is the ankyrin repeat region targeting the NVJ. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00292 SWH1 P35845 NA LMCS00139 SCS2 P40075 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00153 Sec22b_Stim1 NA 2 Mouse ER-PM; PM-ER 1 37794132 Total internal reflection microscopy (TIRF) analysis allowed simultaneous imaging of Sec22b and STIM1 recruitment to ER-PM MCS, visible as puncta at the PM plane, during the activation of store-operated Ca2+ entry (SOCE) . NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00081 Sec22b O75396 ER LMCS00086 Stim1 P70302 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00154 TOM40_VAM6_YPT7 VAM6_YPT7(LTP); VAM6_TOM40(LTP) 3 Yeast MT-Vacuole; Vacuole-MT 1 29870720 Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00367 TOM40 P23644 MT LMCS00368 VAM6 Q07468 Vacuole LMCS00376 YPT7 P32939 Vacuole NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00155 MCP1_VPS13 MCP1_VPS13(LTP) 2 Yeast MT-Vacuole; Vacuole-MT 2 29870720 And a second one by Vps13-Mcp1, which is redundant with ER-Mitochondrionl contacts formed by ERMES. 28864540 Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00369 MCP1 Q12106 MT LMCS00375 VPS13 Q07878 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00156 NVJ1_VAC8 NVJ1_VAC8(LTP) 2 Yeast Nucleus-Vacuole; Vacuole-Nucleus 1 10888680 Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00377 NVJ1 P38881 Nucleus LMCS00378 VAC8 P39968 Vacuole NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00157 LAM6_VAC8 LAM6_VAC8(LTP) 2 Yeast Nucleus-Vacuole; Vacuole-Nucleus 1 26119743 We assayed whether Lam6 localized to ERMES-mediated contact sites. ; This observation, coupled with the fact that one of the physical interactors of Lam6 was the NVJ contact site protein Vac8. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00378 VAC8 P39968 Vacuole LMCS00379 LAM6 Q08001 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00158 SPAST_ABCD1_IST1_CHMP1B IST1_CHMP1B(LTP); SPAST_IST1(HTP: -); SPAST_CHMP1B(LTP) 4 Human Peroxisome-LD; LD-Peroxisome 1 31227594 Model of M1 Spastin in conjunction with ABCD1, IST1, and CHMP1B regulating LD–peroxisome contact formation and LD-to-peroxisome FA trafficking. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00380 IST1 P53990 LD LMCS00381 CHMP1B Q7LBR1 LD LMCS00382 ABCD1 P33897 Peroxisome LMCS00383 SPAST Q9UBP0 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00159 STIM_SARAF NA 2 Human ER-PM; PM-ER 1 22464749 SARAF Translocates to ER-PM Regions in a STIM1-Dependent Manner after Store Depletion. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00279 STIM1 Q13586 ER LMCS00394 SARAF Q96BY9 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00160 NET3C_PVA11 NA 2 Arabidopsis thaliana ER-PM; PM-ER 2 24909329 The Plant Cytoskeleton, NET3C, and VAP27 Mediate the Link between the Plasma Membrane and Endoplasmic Reticulum. 27159525 The endoplasmic reticulum (ER) is connected to the plasma membrane (PM) through the plant-specific NETWORKED protein, NET3C, and phylogenetically conserved vesicle-associated membrane protein-associated proteins (VAPs). NA NA NA NA NA NA NA NA NA NA NA NA LMCS00398 NET3C O82259 ER LMCS00399 PVA11 Q8VZ95 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00161 Tgm2_Vdac1_Itpr1_Hspa9 Itpr1_Hspa9(LTP); Tgm2_Hspa9(LTP) 4 Mouse ER-MT; MT-ER 1 30590033 GRP75 localizes in Mitochondrion-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+from the endoplasmic reticulum (ER) to Mitochondrion.TG2 interacts with GRP75 in mitochondria-associated membranes (MAMs). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00216 Hspa9 P38647 MT LMCS00230 Vdac1 Q60932 MT LMCS00215 Tgm2 P21981 MT LMCS00218 Itpr1 P11881 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00162 PPM1L_ABCD3 NA 2 Human ER-GA; GA-ER 1 22796112 Acyl-CoA binding domain containing 3 (ACBD3) recruits the protein phosphatase PPM1L to ER-Golgi membrane contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00045 PPM1L Q5SGD2 ER LMCS00044 ABCD3 P28288 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00163 TRPC3_STIM1_PI(4,5)P2 NA 3 Human ER-PM; PM-ER 1 35416932 TRPC3 channel gating by lipids requires localization at the ER-PM junctions defined by STIM1.; Notably, the activation and regulation of TRPC3 by PI(4,5)P2 require recruitment of TRPC3 to the ER/PM junctions at a PI(4,5)P2-rich domain. NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00479 TRPC3 Q13507 PM LMCS00279 STIM1 Q13586 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00164 SPTLC2_SPTLC1 SPTLC2_SPTLC1(HTP: -) 2 Human ER-MT; MT-ER 1 34785538 This study demonstrates that the SPTLC1 and SPTLC2 subunits can interact in cis on the ER and in trans across membranes to form a functional SPT complex, the latter suggesting that de novo sphingolipid synthesis occurs at ER–mitochondria contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00482 SPTLC2 O15270 ER; MT LMCS00481 SPTLC1 O15269 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00165 Sptlc2_Sptlc1 NA 2 Mouse ER-MT; MT-ER 1 34785538 We demonstrate that mitochondrial SPTLC2 interacts and forms a complex in trans with the ER-localized SPT subunit SPTLC1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00451 Sptlc2 P97363 ER; MT LMCS00484 Sptlc1 O35704 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00166 At1g07985_sldp1_sldp2 NA 3 Arabidopsis thaliana LD-PM; PM-LD 1 35348751 Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)–plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00614 sldp1 F4I9U3 LD LMCS00615 sldp2 A0A178UK34 LD LMCS00460 At1g07985 Q3EDG6 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00167 OSBPL10_OSBPL9_VAPA_VAPB_PI(4)P VAPB_OSBPL10(HTP: 1.00); OSBPL9_OSBPL10(HTP: 10.79); OSBPL9_VAPB(HTP: 6.69); VAPA_OSBPL10(HTP: 1.00); OSBPL9_VAPA(HTP: 11.72); SPAST_CHMP1B(LTP); VAPA_VAPB(LTP) 5 Human ER-Endosome; Endosome-ER 1 34817532 ORP10 localizes in a PI4P-dependent manner at ER–endosome membrane contact sites tethered by ORP9 and VAP, where it mediates countertransport of PI4P and PS. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00465 OSBPL10 Q9BXB5 Endosome LMCS00425 OSBPL9 Q96SU4 Endosome LMCS00029 VAPA Q9P0L0 ER LMCS00035 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00168 RFFL_PRKN RFFL_PRKN(LTP) 2 Human MT-Endosome; Endosome-MT 1 35373701 Endosomal-associated RFFL facilitates mitochondrial clearance by enhancing PRKN (parkin) recruitment to mitochondria. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00466 RFFL Q8WZ73 Endosome LMCS00467 PRKN O60260 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00169 TMED9_PREB NA 2 Human ER-GA; GA-ER 1 34561617 A new type of ERGIC-ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00468 TMED9 Q9BVK6 ER LMCS00469 PREB Q9HCU5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00170 Sec22b_Stim1 NA 2 Mouse ER-Phg; Phg-ER 1 37794132 By overexpressing and knocking down Sec22b in the presence and absence of STIM1, we show that Sec22b is present at and regulates ER-phagosome MCS independently of STIM proteins. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00472 Sec22b O08547 ER LMCS00475 Stim1 P70302 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00171 Sec22b_Osbpl8 NA 2 Mouse ER-Phg; Phg-ER 1 37794132 Moreover, Sec22b co-precipitated and was co-recruited to phagosomes with the PS,PI(4)P lipid exchange protein ORP8. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00472 Sec22b O08547 ER LMCS00477 Osbpl8 B9EJ86 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00172 SEC22B_STIM1 SEC22B_STIM1(HTP: 105.00) 2 Human ER-Phg; Phg-ER 1 37794132 We thus investigated whether a connection between Sec22b and STIM1 might exist either at the PM or phagosomes.; whereas overexpression of Sec22b had a dramatic effect on STIM1 recruitment that surprisingly did not translate to changes in cytosolic signals. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00473 SEC22B O75396 ER LMCS00474 STIM1 Q13586 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00173 SEC22B_OSBPL8 NA 2 Human ER-Phg; Phg-ER 1 37794132 Moreover, Sec22b co-precipitated and was co-recruited to phagosomes with the PS,PI(4)P lipid exchange protein ORP8. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00473 SEC22B O75396 ER LMCS00476 OSBPL8 Q9BZF1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00174 Vapb_Snca NA 2 Rat ER-MT; MT-ER 1 28337542 alpha-Synuclein is a MAM protein and binds to VAPB but not PTPIP51 in immunoprecipitation assays. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00160 Vapb Q9Z269 ER LMCS00130 Snca P37377 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00175 Vdac1_Itpr1_Hspa9 NA 3 Mouse ER-MT; MT-ER 2 30590033 GRP75 localizes in Mitochondrion-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+from the endoplasmic reticulum (ER) to Mitochondrion.TG2 interacts with GRP75 in mitochondria-associated membranes (MAMs). 24947355 Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains between both organelles involved in Ca2+ exchange, through the voltage-dependent anion channel (VDAC)-1/glucose-regulated protein 75 (Grp75)/inositol 1,4,5-triphosphate receptor (IP3R)-1 complex, and regulating energy metabolism. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00216 Hspa9 P38647 MT LMCS00230 Vdac1 Q60932 MT LMCS00218 Itpr1 P11881 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00176 Pigbos1_Clcc1 NA 2 Rat ER-MT; MT-ER 1 31653868 This result demonstrated that the PIGBOS-CLCC1 interaction can be regulated by modulation of ER-mitochondria contacts, and further bolstered the model of CLCC1 and PIGBOS interacting at ER-mitochondria contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00111 Pigbos1 C0HLN0 MT LMCS00112 Clcc1 Q9WU61 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00177 Vdac1_Gsk3b NA 2 Mouse ER-MT; MT-ER 1 29523440 Rapid activation of Akt by mTORC2 led to inhibition of Gsk-3b at mitochondria-ER junctions, enabling recruitment of hexokinase I (HK-I) to the mitochondrial channel, VDAC. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00189 Gsk3b Q9WV60 ER LMCS00230 Vdac1 Q60932 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00178 ITPR3_HSPA9_VDAC1_PARK7 ITPR3_VDAC1(LTP); ITPR3_HSPA9(LTP); PARK7_ITPR3(LTP); PARK7_HSPA9(LTP); PARK7_VDAC1(LTP) 4 Human ER-MT; MT-ER 1 31767755 DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-GRP75-VDAC1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00229 ITPR3 Q14573 ER LMCS00174 HSPA9 P38646 MT LMCS00173 VDAC1 P21796 MT LMCS00407 PARK7 Q99497 MT; ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00179 VAPB_VAPA_MIGA2 VAPA_MIGA2(HTP: 1.00); VAPA_VAPB(LTP); VAPB_MIGA2(HTP: 1.00) 3 Human ER-MT; MT-ER 1 31628041 MIGA2 binds to LDs and VAP proteins in the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00191 VAPB O95292 ER LMCS00220 VAPA Q9P0L0 ER LMCS00344 MIGA2 Q7L4E1 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00180 Vapb_Vapa_Miga2 NA 3 Mouse ER-MT; MT-ER 1 31628041 MIGA2 binds to LDs and VAP proteins in the ER. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00414 Vapb Q9QY76 ER LMCS00415 Vapa Q9WV55 ER LMCS00413 Miga2 Q8BK03 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00181 TCB1_TCB2_TCB3 TCB1_TCB2(LTP); TCB1_TCB3(LTP); TCB2_TCB3(LTP) 3 Yeast ER-PM; PM-ER 1 22250200 In yeast, seven proteins contain SMP domains: Mmm1p, Mdm12p and Mdm34p in the ERMES complex; Tcb1p, Tcb2p and Tcb3p called tricalbins; and the protein encoded by the uncharacterized gene YPR091C, which we here name Nvj2p.; The tricalbins localize to ER–PM contacts. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00269 TCB1 Q12466 ER; PM LMCS00267 TCB2 P48231 ER; PM LMCS00268 TCB3 Q03640 ER; PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00182 IML2_PET10 IML2_PET10(LTP) 2 Yeast LD-Parasitophorous Vacuole; Parasitophorous Vacuole-LD 1 26004510 To verify this interaction, we performed a pull-down of Iml2 and could detect an interaction with Pet10 specifically under stress conditions when Iml2 becomes an IB resident.; Since Iml2 binds LD proteins only under conditions where it is localized exclusively to IBs, this necessitates that LDs and IBs lie in close proximity during misfolding stress. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00373 IML2 P47031 Parasitophorous Vacuole LMCS00374 PET10 P36139 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00183 PDZD8_RAB7A_ZFYVE27 PDZD8_RAB7A(HTP: 0.00); RAB7A_ZFYVE27(HTP: 0.02) 3 Human ER-Endosome; Endosome-ER 1 32686675 Our results identify the ER membrane proteins, PDZD8 and Protrudin, together with the late endosomal protein Rab7, as components of an ER-late endosome MCS in mammalian cells. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00023 PDZD8 Q8NEN9 ER LMCS00039 RAB7A P51149 Endosome LMCS00032 ZFYVE27 Q5T4F4 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00184 MCP1_VPS13 MCP1_VPS13(LTP) 2 Yeast ER-MT; MT-ER 1 27280386 Together, these results suggest that Mcp1 must recruit Vps13 to mitochondrial membranes to compensate for ERMES defects. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00085 MCP1 Q12106 MT LMCS00082 VPS13 Q07878 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00185 TRPC1_STIM1 TRPC1_STIM1(LTP) 2 Human ER-PM; PM-ER 1 18430726 Store depletion induces STIM1 to aggregate and relocate into clusters at ER-plasma membrane junctions. Lipid raft-associated STIM1 interacts with TRPC1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00261 TRPC1 P48995 PM LMCS00279 STIM1 Q13586 ER; PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00186 Tdrkh_Atp5f1a NA 2 Mouse ER-MT; MT-ER 1 29785746 In addition, immunofluorescence further revealed that TDRKH co-localizes with mitochondrial marker protein ATP5A in mouse testes, which providing the possibility for its location in MAM. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00445 Tdrkh Q80VL1 MT LMCS00156 Atp5f1a Q03265 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00187 SYNJ2BP_RRBP1 SYNJ2BP_RRBP1(HTP: 1.00) 2 Human ER-MT; MT-ER 1 28441135 Follow-up experiments showed that overexpression of SYNJ2BP in HEK 293T cells leads to a dramatic increase in mitochondrial contacts specifically with rough ER membrane, mediated by SYNJ2BP’s binding partner on the ER membrane, RRBP1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00335 SYNJ2BP P57105 NA LMCS00273 RRBP1 Q9P2E9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00188 Vps13D_RHOT2_RHOT1_VAPA_VAPB RHOT2_RHOT1(HTP: 1.00); RHOT2_VPS13D(HTP: 1.00); VAPA_VAPB(LTP); RHOT2_VAPA(HTP: 0.98); RHOT2_VAPB(HTP: 0.99) 5 Human ER-MT; MT-ER 1 33891013 The interaction of VPS13D with the ER is mediated by VAP, and its interaction with either mitochondria or peroxisomes is mediated by Miro; VPS13D binds the ER protein VAP via an unconventional FFAT motif. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00486 VPS13D Q5THJ4 NA LMCS00228 RHOT2 Q8IXI1 MT LMCS00232 RHOT1 Q8IXI2 MT LMCS00191 VAPB O95292 ER LMCS00220 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA CMCS00189 Vps13d_Rhot2_Rhot1_Vapa_Vapb NA 5 Mouse ER-MT; MT-ER 1 33891013 The interaction of VPS13D with the ER is mediated by VAP, and its interaction with either mitochondria or peroxisomes is mediated by Miro. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00488 Vps13d B1ART2 NA LMCS00226 Rhot2 Q8JZN7 MT LMCS00227 Rhot1 Q8BG51 MT LMCS00414 Vapb Q9QY76 ER LMCS00415 Vapa Q9WV55 ER NA NA NA NA NA NA NA NA NA NA NA NA CMCS00190 Vps13D_RHOT2_RHOT1_VAPA_VAPB RHOT2_RHOT1(HTP: 1.00); RHOT2_VPS13D(HTP: 1.00); VAPA_VAPB(LTP); RHOT2_VAPA(HTP: 0.98); RHOT2_VAPB(HTP: 0.99) 5 Human ER-Peroxisome; Peroxisome-ER 1 33891013 The interaction of VPS13D with the ER is mediated by VAP, and its interaction with either mitochondria or peroxisomes is mediated by Miro. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00487 VPS13D Q5THJ4 NA LMCS00492 RHOT2 Q8IXI1 Peroxisome LMCS00493 RHOT1 Q8IXI2 Peroxisome LMCS00255 VAPB O95292 ER LMCS00243 VAPA Q9P0L0 ER NA NA NA NA NA NA NA NA NA NA NA NA CMCS00191 Vps13d_Rhot2_Rhot1_Vapa_Vapb NA 5 Mouse ER-Peroxisome; Peroxisome-ER 1 33891013 The interaction of VPS13D with the ER is mediated by VAP, and its interaction with either mitochondria or peroxisomes is mediated by Miro. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00489 Vps13d B1ART2 NA LMCS00490 Rhot2 Q8JZN7 Peroxisome LMCS00491 Rhot1 Q8BG51 Peroxisome LMCS00494 Vapb Q9QY76 ER LMCS00495 Vapa Q9WV55 ER NA NA NA NA NA NA NA NA NA NA NA NA CMCS00192 OSBPL3_VAPA_VAPB_RRAS VAPB_OSBPL3(HTP: 1.00); VAPA_OSBPL3(HTP: 1.00); VAPA_VAPB(LTP) 4 Human ER-PM; PM-ER 1 25447204 ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers.; Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00496 OSBPL3 Q9H4L5 ER LMCS00280 VAPB O95292 ER LMCS00281 VAPA Q9P0L0 ER LMCS00253 RRAS P10301 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00193 Kcnb1_Vapa_Vapb Kcnb1_Vapa(LTP); Kcnb1_Vapb(LTP) 3 Mouse ER-PM; PM-ER 1 30012696 Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00497 Kcnb1 Q03717 PM LMCS00504 Vapa Q9WV55 ER LMCS00503 Vapb Q9QY76 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00194 Kcnb2_Vapa_Vapb NA 3 Mouse ER-PM; PM-ER 1 30012696 Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00498 Kcnb2 A6H8H5 PM LMCS00504 Vapa Q9WV55 ER LMCS00503 Vapb Q9QY76 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00195 Kcnb1_Vapa_Vapb Kcnb1_Vapa(LTP) 3 Rat ER-PM; PM-ER 2 30012696 Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. 29941597 Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00499 Kcnb1 P15387 PM LMCS00506 Vapb Q9Z269 ER LMCS00505 Vapa Q9Z270 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00196 Kcnb2_Vapa_Vapb Kcnb2_Vapb(LTP) 3 Rat ER-PM; PM-ER 2 30012696 Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. 29941597 Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00500 Kcnb2 Q63099 PM LMCS00506 Vapb Q9Z269 ER LMCS00505 Vapa Q9Z270 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00197 Kcnb1_VAPA_VAPB VAPA_VAPB(LTP); KCNB1_VAPA(LTP); KCNB1_VAPB(LTP) 3 Human ER-PM; PM-ER 2 30012696 These data together demonstrate that the Kv2 PRC domain is both necessary and sufficient for the unique ability of Kv2.1 (and Kv2.2) to recruit endogenous VAPA to ER-PM junctions in HEK293T cells. 29941597 Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00501 KCNB1 Q14721 PM LMCS00281 VAPA Q9P0L0 ER LMCS00280 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00198 Kcnb2_VAPA_VAPB VAPA_VAPB(LTP) 3 Human ER-PM; PM-ER 2 30012696 These data together demonstrate that the Kv2 PRC domain is both necessary and sufficient for the unique ability of Kv2.1 (and Kv2.2) to recruit endogenous VAPA to ER-PM junctions in HEK293T cells. 29941597 Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00502 KCNB2 Q92953 PM LMCS00281 VAPA Q9P0L0 ER LMCS00280 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00199 VAPA_OSBPL9 VAPA_OSBPL9(HTP: 11.72) 2 Human ER-GA; GA-ER 1 15212954 Similar to OSBP, ORP9L localization to the Golgi apparatus and interaction with VAP-A on the ER suggest that it cycles or partitions between these organelles. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00057 VAPA Q9P0L0 ER LMCS00059 OSBPL9 Q96SU4 GA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00200 IncV_VAPA_VAPB VAPA_VAPB(LTP) 3 Human; Chlamydia ER-Parasitophorous vacuole; Parasitophorous vacuole-ER 1 29078338 We propose a model in which IncV acts as one of the primary tethers that contribute to the formation of ER-inclusion MCS. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00507 IncV V8TPH4 Parasitophorous vacuole LMCS00508 VAPA Q9P0L0 ER LMCS00509 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00201 ESYT2_ESYT1_ESYT3 ESYT1_ESYT2(LTP) 3 Human ER-PM; PM-ER 1 25787254 Because E-Syt1 interacts with both E-Syt2 and E-Syt3, E-Syt1 acts as a Ca2+-dependent regulator of E-Syt–mediated ER–PM tethering. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00282 ESYT2 A0FGR8 ER LMCS00283 ESYT3 A0FGR9 ER LMCS00512 ESYT1 Q9BSJ8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00202 PI(4,5)P2_ESYT2_ESYT1_ESYT3 ESYT1_ESYT2(LTP) 4 Human ER-PM; PM-ER 1 23791178 E-Syts tether the ER to the PM via C2 domain-PI(4,5)P2 interactions. NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00282 ESYT2 A0FGR8 ER LMCS00283 ESYT3 A0FGR9 ER LMCS00512 ESYT1 Q9BSJ8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00203 MMM1_MDM10_MDM12_MDM34 MMM1_MDM34(LTP); MDM12_GEM1(LTP); MDM12_MDM34(LTP); MDM12_MMM1(LTP); MDM10_MDM12(LTP); MDM10_MDM34(LTP); 4 Yeast ER-MT; MT-ER 2 19556461 We identified the Mmm1,Mdm10,Mdm12,Mdm36 complex as a molecular tether between ER and Mitochondrion. 22250200 A complex named the ER–mitochondrion encounter structure (ERMES) facilitates contacts between the ER and mitochondria.This complex consists of four proteins: Mdm10p and Mdm34p in the mitochondrial outer membrane, Mmm1p in the ER and the soluble protein Mdm12p. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00178 MDM34 P53083 MT LMCS00181 MMM1 P41800 ER LMCS00180 MDM10 P18409 MT LMCS00179 MDM12 Q92328 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00204 VAPA_CERT1 NA 2 Human ER-MVB; MVB-ER 1 35421371 VAP-A-CERT linkages at ER membrane contact sites drive biogenesis of RNA-containing Evs.; Ceramide transporter CERT localizes to MVBs and controls biogenesis of RNA-containing Evs. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00513 VAPA Q9P0L0 ER LMCS00514 CERT1 Q9Y5P4 MVB NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00205 PEX3_INP1 PEX3_INP1(LTP) 2 Yeast PM-Peroxisome; Peroxisome-PM 1 32970792 The Pex3–Inp1 complex tethers yeast peroxisomes to the plasma membrane. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00516 PEX3 P28795 Peroxisome LMCS00517 INP1 Q03694 PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00206 EHD1_ETMP1 NA 2 Entamoeba histolytica Endosome-Mitosome; Mitosome-Endosome 1 35404118 We posit lipid and ion transport, mitosome fission, and quality control as potential processes that are mediated by the ETMP1-EHD1-tethered mitosome-endosome contact site in E. histolytica. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00518 EHD1 C4M131 Endosome LMCS00519 ETMP1 C4LZN1 Mitosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00207 ATG18_ATG9_ATG2 ATG9_ATG18(LTP); ATG2_ATG18(LTP); ATG2_ATG9(LTP) 3 Yeast ER-Phagophore; Phagophore-ER 2 29848619 Assembly of the Atg9–Atg2–Atg18 complex is important to establish phagophore–endoplasmic reticulum (ER) contact sites. 36354155 Sequential binding of yeast Atg2 and Atg18 to Atg9, the only conserved transmembrane protein in autophagy, at the extremities of the phagophore mediates the establishment of membrane contact sites between the phagophore and the endoplasmic reticulum. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00528 ATG18 P43601 NA LMCS00529 ATG9 Q12142 ER LMCS00530 ATG2 P53855 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00208 ORP2A_PVA11 ORP2A_PVA11(HTP: -) 2 Arabidopsis thaliana ER-PM; PM-ER 1 36252028 Under normal conditions, ORP2A locates to EPCSs and interacts with VAP27-1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00531 ORP2A Q940Y1 ER LMCS00399 PVA11 Q8VZ95 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00209 ORP2A_PVA11_ATG8E ORP2A_PVA11(HTP: -) 3 Arabidopsis thaliana ER-Autophagosome; Autophagosome-ER 1 36252028 However, upon autophagic induction, ORP2A interacts with VAP27-1 and ATG8e as a complex to bridge the EACSs. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00532 ORP2A Q940Y1 ER LMCS00533 PVA11 Q8VZ95 ER LMCS00534 ATG8E Q8S926 Autophagosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00210 PI(3)P_Uvrag_Atg14_Miga NA 4 Fruit fly ER-MT; MT-ER 1 36323251 ER-mitochondrial contact protein Miga regulates autophagy through Atg14 and Uvrag.;In the present study, we found that the mitochondrial protein Miga forms complexes with Uvrag and Atg14 to regulate PI3P production and to stabilize Syx17 during autophagy. NA NA NA NA NA NA PI(3)P 643964 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00521 Uvrag Q9VK07 NA LMCS00522 Atg14 Q9VCE1 NA LMCS00523 Miga Q9W3F7 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00211 TRB2_TRB1_PVA11 TRB2_TRB1(LTP) 3 Arabidopsis thaliana ER-MT; MT-ER 1 36163196 ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00535 TRB2 Q9FJW5 ER; MT LMCS00536 TRB1 Q8VWK4 MT LMCS00291 PVA11 Q8VZ95 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00212 PI(4)P_Osbpl6 NA 2 Mouse ER-PM; PM-ER 1 35518199 The present data clearly demonstrate ORP6 localizing to ER-PM contact sites by binding to PM PI4P through the PH domain. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00537 Osbpl6 Q8BXR9 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00213 CIDEC_PLIN1 NA 2 Human LD-LD 1 23481402 Fsp27 accumulates at the LDCS when two LDs attach each other, creating a pore that specifically allows bidirectional lipid exchange. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00541 CIDEC Q96AQ7 LD LMCS00539 PLIN1 O60240 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00214 Cidec_Plin1 NA 2 Mouse LD-LD 1 23481402 Fsp27 accumulates at the LDCS when two LDs attach each other, creating a pore that specifically allows bidirectional lipid exchange. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00542 Cidec P56198 LD LMCS00540 Plin1 Q8CGN5 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00215 CNM1_TOM70 CNM1_TOM70(LTP) 2 Yeast Nucleus-MT; MT-Nucleus 1 34694322 We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00547 CNM1 P38083 Nucleus LMCS00548 TOM70 P07213 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00216 CTL0402_STIM1 NA 2 Human; Chlamydia ER-Parasitophorous vacuole; Parasitophorous vacuole-ER 1 36853051 Here, we show that the C. trachomatis inclusion membrane protein IncS (CTL0402) specifically recruits STIM1 to ER-inclusion MCS via direct interaction with a cytosolic domain of STIM1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00551 CTL0402 A0A0H3MGT3 Parasitophorous vacuole LMCS00550 STIM1 Q13586 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00217 CTL0402_Stim1 NA 2 Mouse; Chlamydia ER-Parasitophorous vacuole; Parasitophorous vacuole-ER 1 36853051 Here, we show that the C. trachomatis inclusion membrane protein IncS (CTL0402) specifically recruits STIM1 to ER-inclusion MCS via direct interaction with a cytosolic domain of STIM1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00551 CTL0402 A0A0H3MGT3 Parasitophorous vacuole LMCS00549 Stim1 P70302 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00218 ACBD5_VAPB_GSK3B ACBD5_VAPB(HTP: 22.05) 3 Human ER-Peroxisome; Peroxisome-ER 1 35019937 Finally, we show that GSK3β can associate with the ACBD5–VAPB complex to regulate peroxisome–ER contacts by phosphorylating serine-269. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00242 ACBD5 Q5T8D3 Peroxisome LMCS00255 VAPB O95292 ER LMCS00559 GSK3B P49841 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00219 IMC10_LMF1 NA 2 Toxoplasma gondii MT-Pellicle; Pellicle-MT 1 36314270 IMC10 and LMF1 mediate mitochondrial morphology through mitochondrion–pellicle contact sites in Toxoplasma gondii. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00560 IMC10 S7WH01 Pellicle LMCS00561 LMF1 A0A125YTR6 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00220 IncV_VAPA_VAPB_CSNK2A1_CSNK2A2_ CSNK2B CSNK2A1_ CSNK2B(LTP); CSNK2A2_ CSNK2B(LTP); VAPA_VAPB(LTP) 6 Human; Chlamydia ER-Parasitophorous vacuole; Parasitophorous vacuole-ER 1 35838228 IncV/CK2/VAP interplay in ER-Inclusion MCS formation. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00563 IncV V8TPH4 Parasitophorous vacuole LMCS00564 VAPA Q9P0L0 ER LMCS00565 VAPB O95292 ER LMCS00562 CSNK2A1 P68400 Parasitophorous vacuole LMCS00571 CSNK2A2 P19784 Parasitophorous vacuole LMCS00654 CSNK2B P67870 Parasitophorous vacuole NA NA NA NA NA NA NA NA CMCS00221 VAC8_LDO45_LDO16 NA 3 Yeast LD-Vacuole; Vacuole-LD 1 10.1101/2023.04.21.537797 LDO proteins and Vac8 form a vacuole-lipid droplet contact site required for lipophagy in response to starvation NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00566 VAC8 P39968 Vacuole LMCS00567 LDO45 P40218 LD LMCS00568 LDO16 P40219 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00222 LONP1_FUNDC1_ULK1 NA 3 Human ER-MT; MT-ER 1 36927870 Accordingly, our findings highlight a novel mechanism responsible for mitophagy initiation under hypoxia by chaperone Lon in mitochondria through the interaction with FUNDC1-ULK1 complex at the EMC site. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00432 LONP1 P36776 MT LMCS00201 FUNDC1 Q8IVP5 MT LMCS00569 ULK1 O75385 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00223 Vapb_Miga2 NA 2 Mouse ER-MT; MT-ER 1 35764626 These structures reveal that the MIGA2 LD targeting domain has a large internal hydrophobic pocket that accommodates phospholipids and that two phosphorylations of the FFAT motif are required for tight interaction of MIGA2 with VAPB, which enhances the rate of lipid transport. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00414 Vapb Q9QY76 ER LMCS00413 Miga2 Q8BK03 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00224 Plin2_Tp53 NA 2 Mouse MT-LD; LD-MT 1 37055989 This study aimed to assess the molecular machinery of mitochondria and LDs contacts involved in hepatic lipotoxicity and uncover the critical role of mito-p53-PLIN2 interaction in AFB1 exposure-induced lipid metabolic disorders. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00572 Plin2 P43883 MT LMCS00575 Tp53 P02340 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00225 PLIN2_TP53 NA 2 Human MT-LD; LD-MT 1 37055989 This study aimed to assess the molecular machinery of mitochondria and LDs contacts involved in hepatic lipotoxicity and uncover the critical role of mito-p53-PLIN2 interaction in AFB1 exposure-induced lipid metabolic disorders. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00573 PLIN2 Q99541 MT LMCS00574 TP53 P04637 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00226 PVA12_PVA11_MSL10 NA 3 Arabidopsis thaliana ER-PM; PM-ER 1 https://doi.org/10.7936/2hqh-f829 I propose a model wherein MSL10’s direct interaction with VAP27s creates EPCSs which has implications for MSL10 function. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00577 PVA12 Q9SHC8 ER LMCS00399 PVA11 Q8VZ95 ER LMCS00576 MSL10 Q9LYG9 PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00227 Nrg2_Vapa_Vapb NA 3 Mouse ER-PM; PM-ER 1 36769244 Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00504 Vapa Q9WV55 ER LMCS00503 Vapb Q9QY76 ER LMCS00579 Nrg2 P56974 PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00228 Nrg2_Vapa_Vapb NA 3 Rat ER-PM; PM-ER 1 36769244 Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00506 Vapb Q9Z269 ER LMCS00505 Vapa Q9Z270 ER LMCS00578 Nrg2 O35569 PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00229 NRG2_VAPA_VAPB VAPA_VAPB(LTP) 3 Human ER-PM; PM-ER 1 36769244 Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00281 VAPA Q9P0L0 ER LMCS00280 VAPB O95292 ER LMCS00580 NRG2 O14511 PM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00230 OSBPL5_OSBPL8_MIB1_APOO OSBPL5_OSBPL8(HTP: 1.00) 4 Human ER-MT; MT-ER 1 36130504 ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00146 OSBPL5 Q9H0X9 ER LMCS00197 OSBPL8 Q9BZF1 ER LMCS00581 MIB1 Q86YT6 MT LMCS00582 APOO Q9BUR5 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00231 OSBPL9_OSBPL10 OSBPL9_OSBPL10(HTP: 10.79) 2 Human ER-GA; GA-ER 1 36853333 ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00059 OSBPL9 Q96SU4 NA LMCS00583 OSBPL10 Q9BXB5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00232 VCP_FAF2 VCP_FAF2(LTP) 2 Human ER-MT; MT-ER 1 36746962 The p97-UBXD8 complex regulates ER-Mitochondria contact sites by altering membrane lipid saturation and composition. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00584 VCP P55072 NA LMCS00585 FAF2 Q96CS3 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00233 Vcp_Faf2 NA 2 Human ER-MT; MT-ER 1 36746962 The p97-UBXD8 complex regulates ER-Mitochondria contact sites by altering membrane lipid saturation and composition. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00586 Vcp Q01853 NA LMCS00587 Faf2 Q3TDN2 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00234 PLIN5_SLC27A4 NA 2 Human MT-LD; LD-MT 1 37290445 We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts.; We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00084 PLIN5 Q00G26 LD LMCS00590 SLC27A4 Q6P1M0 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00235 Plin5_Slc27a4 NA 2 Mouse MT-LD; LD-MT 1 37290445 We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts.; We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00347 Plin5 Q8BVZ1 LD LMCS00591 Slc27a4 Q91VE0 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00236 EIF2AK3_ESYT1 NA 2 Human ER-MT; MT-ER 1 36821088 PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00592 EIF2AK3 Q9NZJ5 ER LMCS00594 ESYT1 Q9BSJ8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00237 Eif2ak3_Esyt1 NA 2 Mouse ER-MT; MT-ER 1 36821088 PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00593 Eif2ak3 Q9Z2B5 ER LMCS00595 Esyt1 Q3U7R1 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00238 ORAI1_STIM1_PI(4)P STIM1_ORAI1(LTP) 3 Human ER-PM; PM-ER 1 25517631 These findings identify a role for tethered ER/PM microdomains in regulating Ca2+ influx and directing STIM1-Orai1 conformational changes, and report on a new mode of regulation by PI(4,5)P2. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00260 ORAI1 Q96D31 PM LMCS00279 STIM1 Q13586 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00239 cert_Osbp_vap_PI(4)P NA 4 Fruit fly ER-GA; GA-ER 1 37289040 Under fed conditions, PtdIns4P recruited its effectors Osbp and cert to the Golgi apparatus. The interaction between Osbp and ER protein VAP mediated ER-Golgi contact. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00597 cert Q9Y128 NA LMCS00599 Osbp Q9VC05 NA LMCS00601 vap Q8IR23 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00240 cert_Osbp_vap_PI(4)P NA 4 Fruit fly ER-Autolysosome; Autolysosome-ER 1 37289040 Osbp and cert proteins were recruited by the autolysosomal PtdIns4P and established contacts between ER and autolysosomes. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00598 cert Q9Y128 NA LMCS00600 Osbp Q9VC05 NA LMCS00602 vap Q8IR23 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00241 rdgB_dVAP-A NA 2 Fruit fly ER-PM; PM-ER 3 36803287 Overall our model explains the topology of the RDGB-VAP complex at this ER-PM contact site and paves the way for analysis of lipid transfer function in this setting. 33597200 Previously, the interaction between the FFAT motif of RDGB and the integral ER protein dVAP-A was shown to be essential for accurate localization to ER–PM MCS. Here, we report that the FFAT/dVAP-A interaction alone is insufficient to localize RDGB accurately; this also requires the function of the C-terminal domains, DDHD and LNS2. 29180517 dVAP-A is enriched at the SMC and is essential for localization of RDGBα.; In Drosophila photoreceptors, endogenous RDGBα is constitutively localized to the SMC, an ER–PM contact site. NA NA NA NA NA NA NA NA NA NA LMCS00605 rdgB P43125 NA LMCS00606 dVAP-A Q9W4N8 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00243 MpPHOT_MpRTN1 NA 2 Marchantia polymorpha ER-PM; PM-ER 1 35476214 A model for collaborative organelle repositioning by phot and RTN in Marchantia polymorpha.In wild-type (WT) cells, Mpphot on the plasma membrane (PM) and MpRTN1 in the ER membrane interact at ER-PM contact sites. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00607 MpPHOT A0A077KFI9 PM LMCS00608 MpRTN1 A0A2R6X5G0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00244 LIP1_sldp1 NA 2 Arabidopsis thaliana LD-PM; PM-LD 1 10.1101/2022.01.13.476213 SLDP and LIPA mediate lipid droplet-plasma membrane tethering in Arabidopsis thaliana. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00613 LIP1 Q9ZWT1 PM LMCS00614 sldp1 F4I9U3 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00245 LIP1_sldp2 NA 2 Arabidopsis thaliana LD-PM; PM-LD 1 10.1101/2022.01.13.476213 SLDP and LIPA mediate lipid droplet-plasma membrane tethering in Arabidopsis thaliana. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00613 LIP1 Q9ZWT1 PM LMCS00615 sldp2 A0A178UK34 LD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00246 SYTL2_RAB27A_PI(4,5)P2 SYTL2_RAB27A(LTP) 3 Human PM-WP body; WP body-PM 1 35660980 Rab27a recruits Slp2-a to WPB via its SHD.; As a consequence, Slp2-a would be enriched at that part of the WPB which is closest to the PM and permits interactions with PM PI(4,5)P2. NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00616 SYTL2 Q9HCH5 PM; WP body LMCS00617 RAB27A P51159 WP body NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00247 SNX5_VPS13A NA 2 Human ER-Endosome; Endosome-ER 1 36977596 We have identified the sorting nexin SNX5 as an interactor of VPS13A that mediates its association with endosomal subdomains. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00618 SNX5 Q9Y5X3 Endosome LMCS00619 VPS13A Q96RL7 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00248 TEX2_PP4P1 NA 2 Human ER-LY; LY-ER 1 36705603 Together, our data identify Tex2 as a tubular ER protein that resides at TMEM55-dependent ER–LE/lys MCSs required for lysosomal functions. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00623 TEX2 Q8IWB9 ER LMCS00624 PP4P1 Q86T03 LY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00249 TEX2_PP4P1 NA 2 Human ER-Endosome; Endosome-ER 1 36705603 Together, our data identify Tex2 as a tubular ER protein that resides at TMEM55-dependent ER–LE/lys MCSs required for lysosomal functions. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00625 TEX2 Q8IWB9 ER LMCS00626 PP4P1 Q86T03 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00250 TMED10_TMED2 TMED10_TMED2(HTP: 1.00) 2 Human ER-MT; MT-ER 1 36174556 ER-Golgi-localized proteins TMED2 and TMED10 control the formation of plasma membrane lipid nanodomains. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00627 TMED10 P49755 ER LMCS00628 TMED2 Q15363 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00251 SACM1L_VAPA_TMED10_TMED2_OSBP_ARF1_PPM1L_CERT1 SACM1L_VAPA(HTP: -); TMED10_VAPA; TMED10_TMED2(HTP: 1.00) 8 Human ER-GA; GA-ER 1 36174556 MCSs between the ER and the Golgi are well known to have two classes of complexes: one involved in cholesterol transfer, containing VAPA, SAC1, OSBP, and ARF1; and another involved in ceramide transfer, containing VAPA, PPM1L, and CERT. The above analysis shows not only that TMED2/10 are present in both these complexes and required for their existence but also that these two complexes actually can form supercomplexes, mediating the transfer of both cholesterol and ceramide, again in a TMED2/10-dependent manner. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00050 SACM1L Q9NTJ5 ER LMCS00057 VAPA Q9P0L0 ER LMCS00627 TMED10 P49755 GA LMCS00628 TMED2 Q15363 GA LMCS00629 OSBP P22059 GA LMCS00630 ARF1 P84077 GA LMCS00631 PPM1L Q5SGD2 ER LMCS00054 CERT1 Q9Y5P4 GA CMCS00252 STIM1_VAPB_PI(4,5)P2 STIM1_VAPB(HTP: 28.35) 3 Human ER-PM; PM-ER 1 35416932 Accordingly, we identified an FFAT site at the TRPC3 N-terminal loop within the linker helices that envelope the C-terminus pole helix. The FFAT site interacts with the ER-resident VAPB to recruit TRPC3 to the ER/PM junctions and control its receptor-mediated activation. NA NA NA NA NA NA PI(4,5)P2 125105 C9H21O17P3 C(C(COP(=O)(O)OC1C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O)O NA NA NA NA LMCS00279 STIM1 Q13586 ER; PM LMCS00280 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00253 ATG18_ATG2 ATG18_ATG2(LTP) 2 Yeast ER-Phagophore; Phagophore-ER 1 30254161 The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00528 ATG18 P43601 NA LMCS00530 ATG2 P53855 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00254 VPS13_YPT35 VPS13_YPT35(LTP) 2 Yeast Nucleus-Vacuole; Vacuole-Nucleus 1 30018089 Vps13 and Ypt35 are interdependent for recruitment to the NVJ. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00424 VPS13 Q07878 NA LMCS00638 YPT35 P38815 Vacuole NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00255 TOMM40_TOMM70_ATG2A TOMM40_TOMM70(LTP) 3 Human ER-MT; MT-ER 1 31412244 TOM40/70 complex recruits Atg2A to MAM. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00223 TOMM40 O96008 MT LMCS00642 TOMM70 O94826 MT LMCS00641 ATG2A Q2TAZ0 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00256 ATG2A_ATG9A NA 2 Human ER-Vesicle; Vesicle-ER 1 31412244 In addition, Atg2A interacts with Atg9A by a region within its N terminus. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00643 ATG2A Q2TAZ0 ER LMCS00644 ATG9A Q7Z3C6 Vesicle NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00257 PITPNM1_VAPB PITPNM1_VAPB(HTP: 1.00) 2 Human ER-GA; GA-ER 2 15545272 The Inte+raction of VAP-B with Nir2 Affects the ER Structure-The VAP-B protein was previously localized to the ER and to pre-Golgi intermediates by biochemical and immunocytochemical methods.We have previously shown that Nir2 mainly localizes in the Golgi apparatus, but it is also found in the ER in interphase cells. 18614794 Our results show that the coordinated function of Nir2, OSBP, and CERT, at the ER–Golgi MCSs requires the VAP proteins, and it is critical for maintaining the structural and functional identity of the Golgi complex. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00645 PITPNM1 O00562 NA LMCS00042 VAPB O95292 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00258 PITPNM1_CERT1_OSBP_PI(4)P NA 4 Human ER-GA; GA-ER 1 18614794 Our results show that the coordinated function of Nir2, OSBP, and CERT, at the ER–Golgi MCSs requires the VAP proteins, and it is critical for maintaining the structural and functional identity of the Golgi complex. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00054 CERT1 Q9Y5P4 NA LMCS00056 OSBP P22059 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00259 RELCH_OSBP_RAB11A RAB11A_RELCH(HTP: 146.83) 3 Human GA-Endosome; Endosome-GA 1 29514919 The novel protein RELCH/KIAA1468 as a Rab11-binding protein and show that RELCH/KIAA1468 and Rab11 regulate OSBP-dependent nonvesicular cholesterol transport from recycling endosomes to the trans-Golgi network. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00646 RELCH Q9P260 Endosome LMCS00647 OSBP P22059 GA LMCS00648 RAB11A P62491 Endosome NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00260 VAPB_ OSBP_VAPA_OSBPL2_PI(4)P OSBP_VAPB(HTP: 1.00); VAPB_OSBPL2(HTP: 1.00); VAPA_OSBPL2(HTP: 1.00); VAPA_VAPB(LTP); OSBP_VAPA(LTP) 5 Human ER-GA; GA-ER 1 29930082 In addition, we show that the OSBP, lipid and VAP binding activities of ORP4L control its association at the ER–Golgi interface where it influences PI(4)P content and structure of the TGN and proximal Golgi compartments. NA NA NA NA NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00042 VAPB O95292 ER LMCS00056 OSBP P22059 ER; GA LMCS00057 VAPA Q9P0L0 ER LMCS00649 OSBPL2 Q9H1P3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00261 OSBPL5_OSBPL8_PI(4)P OSBPL5_OSBPL8(HTP: 1.00) 3 Human ER-PM; PM-ER 3 26206935 We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)–related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. 28970484 ORP5 and ORP8 are reported to localize to endoplasmic reticulum–plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. 29472386 PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER–PM contact sites. NA NA PI(4)P 643965 C41H80O16P2 CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OC1C(C(C(C(C1O)O)OP(=O)(O)O)O)O)OC(=O)CCCCCCCCCCCCCCC NA NA NA NA LMCS00652 OSBPL5 Q9H0X9 ER LMCS00653 OSBPL8 Q9BZF1 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00262 IST2_OSH6 IST2_OSH6(LTP) 2 Yeast ER-PM; PM-ER 2 32327560 Osh6 requires Ist2 for localization to ER–PM contacts and efficient phosphatidylserine transport in budding yeast. 34259806 Ist2 recruits the lipid transporters Osh6/7 to ER–PM contacts to maintain phospholipid metabolism. NA NA NA NA NA NA NA NA NA NA NA NA LMCS00265 IST2 P38250 ER LMCS00397 OSH6 Q02201 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00263 IST2_OSH7 IST2_OSH7(LTP) 2 Yeast ER-PM; PM-ER 1 34259806 Ist2 recruits the lipid transporters Osh6/7 to ER–PM contacts to maintain phospholipid metabolism. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00265 IST2 P38250 ER LMCS00396 OSH7 P38755 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00264 Dnm1l_C1qtnf1 NA 2 Mouse ER-MT; MT-ER 1 34837016 ER-associated CTRP1 regulates mitochondrial fission via interaction with DRP1.; We herein showed that ablation of CTRP1 suppresses the recruitment of DRP1 to mitochondria and provided evidence suggesting that the ER-mitochondrion interaction is required for the proper regulation of mitochondrial morphology. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00203 Dnm1l Q8K1M6 MT LMCS00656 C1qtnf1 Q9QXP7 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00265 ORAI1_STIM1_UNC93B1 ORAI1_STIM1(LTP); ORAI1_UNC93B1(HTP: 0.59) 3 Human ER-PM; PM-ER 1 35065962 At these ER–PM junctions, STIM1 can trap and gate Orai1 Ca2+ channels, eliciting an influx of Ca2+ from the extracellular milieu into the cytoplasm.; UNC93B1 deficiency might impair the traffic or activity of an adapter protein to reduce STIM1–Orai1 interactions but not STIM1 recruitment. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00260 ORAI1 Q96D31 NA LMCS00279 STIM1 Q13586 ER; PM LMCS00635 UNC93B1 Q9H1C4 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00266 Itpr3_Hspa9_Vdac1_Pdk4 NA 4 Mouse ER-MT; MT-ER 1 30523025 Here, we demonstrate that PDK4 interacts with and stabilizes the IP3R1-GRP75-VDAC1 complex at the MAM interface. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00216 Hspa9 P38647 MT LMCS00230 Vdac1 Q60932 MT LMCS00218 Itpr1 P11881 ER LMCS00155 Pdk4 O70571 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00267 Bid_PACS2 NA 2 Human ER-MT; MT-ER 1 15692567 Our demonstration that apoptotic inducers promote PACS-2 to bind and translocate full-length Bid to mitochondria. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00658 Bid P70444 NA LMCS00116 PACS2 Q86VP3 ER; MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00268 ERO1A_EIF2AK3 NA 2 Mouse ER-MT; MT-ER 1 36586409 The PERK-Ero1a complex increases mitochondria-ER contacts during early ER stress. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00183 ERO1A Q96HE7 ER LMCS00592 EIF2AK3 Q9NZJ5 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00269 Ero1a_Eif2ak3 NA 2 Human ER-MT; MT-ER 1 36586409 The PERK-Ero1a complex increases mitochondria-ER contacts during early ER stress. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00556 Ero1a Q8R180 ER LMCS00593 Eif2ak3 Q9Z2B5 ER NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CMCS00270 RMDN3_MARCHF5 MARCHF5_RMDN3(LTP) 2 Human ER-MT; MT-ER 1 34964862 We found that MITOL interacts with and ubiquitinates RMDN3. NA NA NA NA NA NA NA NA NA NA NA NA NA NA LMCS00190 RMDN3 Q96TC7 MT LMCS00225 MARCHF5 Q9NX47 MT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA